We study the occurrence of vibrational resonance as well as the underlying mechanism in excitable systems. The single vibration resonance and vibration bi-resonance are observed when tuning the amplitude and frequency of high-frequency force simultaneously. Furthermore, by virtue of the phase diagram of low-frequency-signal-free FitzHugh-Nagumo model, it is found that each maxima of response measure is located exactly at the transition boundary of phase patterns. Therefore, it is the transition between different phase-locking modes that induces vibrational resonance in the excitable systems. Finally, this mechanism is verified in the Hodgkin-Huxley neural model. Our results provide insights into the transmission of weak signals in nonlinear systems, which are valuable in engineering for potential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.