Abstract:Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.
This paper presents a modified artificial bee colony (MABC) algorithm to solve optimal power flow (OPF) problem. In the proposed MABC algorithm, the searching operation for new food source of artificial bee colony (ABC) algorithm is replaced with mutation and crossover operation of differential evolution (DE) algorithm to improve exploitation capacity. The OPF objective functions involve minimization of total fuel cost of generating units, minimization of emission of atmospheric pollutants, minimization of active power losses, and minimization of voltage deviations. The fuzzy satisfaction-maximizing method is utilized to convert the multiobjectives problem into single objective problem. The proposed approach is applied to the OPF problem on IEEE 30-bus test system. And the results are compared with those obtained by other heuristic algorithms, which demonstrate that the MABC algorithm not only has a better exploration capacity but also possesses stronger exploitation capacity and can effectively solve the OPF problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.