Studying dynamic biological processes requires approaches compatible with the lifetimes of the biochemical transactions under investigation, which can be very short. We describe a genetically encoded system that allows protein neighborhoods to be mapped using visible light. Our approach involves fusing an engineered flavoprotein to a protein of interest. Brief excitation of the fusion protein leads to the labeling of nearby proteins with cell-permeable probes. Mechanistic studies reveal different labeling pathways are operational depending on the nature of the exogenous probe that is employed. When combined with quantitative proteomics, this photoproximity labeling system generates “snapshots” of protein territories with high temporal and spatial resolution. The intrinsic fluorescence of the fusion domain permits correlated imaging and proteomics analyses, a capability that is exploited in several contexts, including defining the protein clients of the major vault protein. The technology should be broadly useful in the biomedical area.
Studying dynamic biological processes requires approaches compatible with the lifetimes of the biochemical transactions under investigation, which can be very short. We describe a genetically encoded system that allows protein interactomes to be captured using visible light. Our approach involves fusing an engineered flavoprotein with a protein of interest. Brief excitation of the fusion protein leads to local generation of reactive radical species within cell-permeable probes. When combined with quantitative proteomics, the system generates snapshots of protein interactions with high temporal resolution. The intrinsic fluorescence of the fusion domain permits correlated imaging and proteomics analyses, a capability that is exploited in several contexts, including defining the protein clients of the major vault protein (MVP). The technology should be broadly useful in the biomedical area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.