Background: Cancer-associated fibroblasts (CAFs) are an important part of the tumour microenvironment, and their functions are of great concern. This series of experiments aimed to explore how Yes-associated protein 1 (YAP1) regulates the function of stromal cells and how the normal fibroblasts (NFs) convert into CAFs in prostate cancer (PCa). Methods: The effects of conditioned media from different fibroblasts on the proliferation and invasion of epithelial cells TrampC1 were examined. We then analysed the interaction between the YAP1/TEAD1 protein complex and SRC, as well as the regulatory function of the downstream cytoskeletal proteins and actins. A transplanted tumour model was used to explore the function of YAP1 in regulating tumour growth through stromal cells. The relationship between the expression of YAP1 in tumour stromal cells and the clinical characteristics of PCa patients was analysed. Results: The expression level of YAP1 was significantly upregulated in PCa stromal cells. After the expression level of YAP1 was increased, NF was transformed into CAF, enhancing the proliferation and invasion ability of epithelial cells. The YAP1/TEAD1 protein complex had the capability to influence downstream cytoskeletal proteins by regulating SRC transcription; therefore, it converts NF to CAF, and CAF can significantly promote tumour growth and metastasis. The high expression of YAP1 in the tumour stromal cells suggested a poor tumour stage and prognosis in PCa patients. Conclusion: YAP1 can convert NFs into CAFs in the tumour microenvironment of PCa, thus promoting the development and metastasis of PCa. Silencing YAP1 in tumour stromal cells can effectively inhibit tumour growth.
Castration-resistant prostate cancer (CRPC) with neuroendocrine differentiation (NED) is a lethal disease for which effective therapies are urgently needed. The mechanism underlying development of CRPC with NED, however, remains largely uncharacterized. In this study, we explored and characterized the functional role of neurotensin (NTS) in cell line and animal models of CRPC with NED. NTS was acutely induced by androgen deprivation in animal models of prostate cancer (PCa) and activated downstream signaling leading to NED through activation of neurotensin receptor 1 (NTSR1) and neurotensin receptor 3 (NTSR3), but not neurotensin receptor 2 (NTSR2). Our findings also revealed the existence of a CK8+/CK14+ subpopulation in the LNCaP cell line that expresses high levels of both NTSR1 and NTSR3, and displays an enhanced susceptibility to develop neuroendocrine-like phenotypes upon treatment with NTS. More importantly, NTSR1 pathway inhibition prevented the development of NED and castration resistance in vivo. We propose a novel role of NTS in the development of CRPC with NED, and a possible strategy to prevent the onset of NED by targeting the NTS signaling pathway.
The kinesin super-family protein (KIF) 4A gene is reported to be overexpressed and associated with poor clinical prognosis in human cancers; however, its clinical significance in prostate cancer (PCa) has not been well studied. The present study performed dataset analyses and revealed that KIF4A expression was significantly increased in castration-resistant PCa patients. Additionally, KIF4A expression was significantly highly expressed in PCa tissues compared with non-cancerous tissues, particularly in advanced PCa pathological stages. Upregulated KIF4A mRNA expression in PCa tissues was significantly correlated with shorter overall survival and prostate-specific antigen failure. Furthermore, both univariate and multivariate analyses revealed that upregulated KIF4A may predict poor biochemical recurrence (BCR)-free survival. The data suggested that KIF4A may play a key role in PCa progression. Notably, increased KIF4A expression may potentially predict poor BCR-free survival in PCa patients.
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.