Flashover of contaminated insulators is a major problem for power systems at high altitude. Laboratory experiments have shown that the optical diagnostic method can provide extensive information on the physical process of contamination flashover. In this paper, a study of the local arc on a wet polluted surface under low pressure by using the optical diagnostic method is presented. The thickness of the continuous spectrum, spectral line intensity and the spectral composition varies significantly in different stages of the local arc development. Thermodynamic parameters of the local arc (including electron temperature, electron density and conductivity) are obtained by analyzing the spectra. Both the electron temperature and the conductivity increase with the increase in leakage current and air pressure. Although the electron density does not change significantly with an increase in leakage current, it increases significantly with an increase in air pressure. The findings of this work could be used as supplementary information for the investigation of local arc parameters, thus providing a reliable reference for the calculation of contamination flashover at high altitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.