A relief duct is often used for indoor vented enclosures to discharge unburnt and burnt gas mixtures to outdoors, but its use can significantly affect pressure relief and flame behavior. In the current paper, duct-vented explosions of hydrogen−air mixtures with equivalence ratios ranging from 0.8 to 4.0 were experimentally investigated in a small cylindrical vessel with a 50-cmlong relief duct. Different from "coherent deflagration" as previously reported, the maximum pressure rise rate in the duct is always larger than that in the vessel. Three pressure peaks can be identified on the external pressure profile, which result from the burst of the vent cover, the burn-up in the duct, and the external explosion, respectively. Whether the second or the third pressure peak is the dominant one depends on the hydrogen equivalence ratio. Compared with simple vented explosions, the use of a relief duct decreases the pressure relief efficiency and the external flame size for all equivalence ratios tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.