The resection of DNA strand with a 5´ end at double-strand breaks is an essential step in recombinational DNA repair. RecJ, a member of DHH family proteins, is the only 5´ nuclease involved in the RecF recombination pathway. Here, we report the crystal structures of Deinococcus radiodurans RecJ in complex with deoxythymidine monophosphate (dTMP), ssDNA, the C-terminal region of single-stranded DNA-binding protein (SSB-Ct) and a mechanistic insight into the RecF pathway. A terminal 5´-phosphate-binding pocket above the active site determines the 5´-3´ polarity of the deoxy-exonuclease of RecJ; a helical gateway at the entrance to the active site admits ssDNA only; and the continuous stacking interactions between protein and nine nucleotides ensure the processive end resection. The active site of RecJ in the N-terminal domain contains two divalent cations that coordinate the nucleophilic water. The ssDNA makes a 180° turn at the scissile phosphate. The C-terminal domain of RecJ binds the SSB-Ct, which explains how RecJ and SSB work together to efficiently process broken DNA ends for homologous recombination.DOI: http://dx.doi.org/10.7554/eLife.14294.001
In archaea, the NurA nuclease and HerA ATPase/helicase, together with the Mre11-Rad50 complex, function in 3= singlestranded DNA (ssDNA) end processing during homologous recombination (HR). However, bacterial homologs of NurA and HerA have not been characterized. From Deinococcus radiodurans, we identified the manganese-dependent 5=-to-3= ssDNA/double-stranded DNA (dsDNA) exonuclease/endonuclease NurA (DrNurA) and the ATPase HerA (DrHerA). These two proteins stimulated each other's activity through direct protein-protein interactions. The N-terminal HAS domain of DrHerA was the key domain for this interaction. Several critical residues of DrNurA and DrHerA were verified by site-directed mutational analysis. Temperature-dependent activity assays confirmed that the two proteins had mesophilic features, with optimum activity temperatures 10°C to 15°C higher than their optimum growth temperatures. Knocking out either nurA or herA affected cell proliferation by shortening the growth phase, especially for growth at a high temperature (37°C). In addition, both mutant strains displayed almost 10-fold-reduced intermolecular recombination efficiency, indicating that DrNurA and DrHerA might be involved in homologous recombination in vivo. However, single-and double-gene deletions did not show significantly decreased radioresistance. Our results confirmed that the biochemical activities of bacterial NurA and HerA proteins were conserved with archaea. Our phenotypical results suggested that these proteins might have different functions in bacteria. IMPORTANCEDeinococcus radiodurans NurA (DrNurA) was identified as a manganese-dependent 5=-to-3= ssDNA/dsDNA exonuclease/endonuclease, and Deinococcus radiodurans HerA (DrHerA) was identified as an ATPase. Physical interactions between DrNurA and DrHerA explained mutual stimulation of their activities. The N-terminal HAS domain on DrHerA was identified as the interaction domain. Several essential functional sites on DrNurA and DrHerA were characterized. Both DrHerA and DrNurA showed mesophilic biochemical features, with their optimum activity temperatures 10°C to 15°C higher than their optimum growth temperatures in vitro. Knockout of nurA or herA led to abnormal cell proliferation and reduced intermolecular recombination efficiency but no obvious effect on radioresistence.
Lysine acetylation and succinylation are major types of protein acylation that are important in many cellular processes including gene transcription, cellular metabolism, DNA damage response. Malfunctions in these post-translational modifications are associated with genome instability and disease in higher organisms. In this study, we used high-resolution nano liquid chromatography-tandem mass spectrometry combined with affinity purification to quantify the dynamic changes of protein acetylation and succinylation in response to ultraviolet (UV)-induced cell stress. A total of 3345 acetylation sites in 1440 proteins and 567 succinylation sites in 246 proteins were identified, many of which have not been reported previously. Bioinformatics analysis revealed that these proteins are involved in many important biological processes, including cell signalling transduction, protein localization and cell metabolism. Crosstalk analysis between these two modifications indicated that modification switches might regulate protein function in response to UV-induced DNA damage. We further illustrated that FEN1 acetylation at different sites could lead to different cellular phenotypes, suggesting the multiple function involvement of FEN1 acetylation under DNA damage stress. These systematic analyses provided valuable resources and new insight into the potential role of lysine acetylation and succinylation under physiological and pathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.