The quality of a video clip is considered to be poor if the resolution or the frame rate is low. Video interpolation is thus introduced to enhance video quality and provide a better viewing experience to users. However, there are still some challenges, like the blur caused by motion changes. In this paper, we introduce a dual refinement technique for video interpolation (DRVI). It has three main steps, namely flow refinement, frame synthesis, and Haar refinement. The flow refinement can generate accurate bidirectional flows, which are more suitable for frame interpolation tasks. The Haar refinement uses the Discrete Wavelet Transform (DWT). It can preserve information in different frequency domains and also speed up the learning process. We also add an arbitrary time approximation module to allow multi-frame generation. The number of learnable parameters in our model is much less than existing methods; still, it has excellent performance. Our method is trained on Vimeo90K [1] and tested on three well-known datasets to demonstrate its effectiveness.
Video has become the most popular medium of communication over the past decade, with nearly 90 percent of the bandwidth on the Internet being used for video transmission. Thus, evaluating the quality of an acquired or compressed video has become increasingly important. The goal of video quality assessment (VQA) is to measure the quality of a video clip as perceived by a human observer. Since manually rating every video clip to evaluate quality is infeasible, researchers have attempted to develop various quantitative metrics that estimate the perceptual quality of video. In this paper, we propose a new region-based average video quality assessment (RAVA) technique extending image quality assessment (IQA) metrics. In our experiments, we extend two full-reference (FR) image quality metrics to measure the feasibility of the proposed RAVA technique. Results on three different datasets show that our RAVA method is practical in predicting objective video scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.