Background/Aims: Long noncoding RNAs (lncRNAs) have been a research hotspot, as they play important roles in tumor development. However, their expression pattern and biological function in osteosarcoma have not yet been clarified. Methods: Differentially expressed lncRNAs in osteosarcoma and paracarcinoma tissues were identified by screening an lncRNA microarray, and candidate lncRNAs were verified by quantitative real-time PCR (qRT-PCR). A series of bioinformatics and molecular biological methods were adopted to investigate the interaction among lncRNA, microRNA (miRNA), and miRNA target genes during the development and occurrence of osteosarcoma. Cell viability was measured using a Cell Counting Kit-8 assay. Results: Chip microarray screening combined with the validation of differentially expressed candidate lncRNAs showed that the lncRNA small nucleolar RNA host gene 16 (SNHG16) had the largest fold change. SNHG16 was highly expressed in osteosarcoma tissues and cell lines, and its downregulation led to the suppressed proliferation of osteosarcoma cells. Further investigations revealed that SNHG16 could upregulate zinc finger E-box-binding homeobox 1 (ZEB1) expression by acting as an endogenous sponge of miR-205. Moreover, rescue assays proved that the effects of SNHG16 on the proliferation of osteosarcoma cells were dependent on miR-205. Conclusion: SNHG16 can significantly enhance the proliferation of osteosarcoma cells. In addition, SNHG16, miR-205, and ZEB1 interact in a common pathway during the development and occurrence of osteosarcoma, providing novel targets for intervention in the treatment of osteosarcoma.
BackgroundIncreasing numbers of studies have examined the correlation between specific miRNAs and tumours to enable their diagnosis and treatment. However, there are few reports regarding the concrete role and mechanism of miRNA in osteosarcoma.MethodsThe expression of miR-524 in osteosarcoma tissues and cell lines was examined by qRT-PCR. The cell proliferation was examined using CCK-8 in vitro. A series of bioinformatics and molecular biology techniques were adopted to investigate the regulatory relationship between miR-524 and target genes in osteosarcoma.ResultsThe results showed that the miRNA with the most significant differential expression in osteosarcoma was miR-524, which was significantly up-regulated in both osteosarcoma tissues and cell lines. MiR-524 knockdown inhibited proliferation and promoted apoptosis of osteosarcoma cells, while overexpression of miR-524 induced their proliferation. Bioinformatics analysis and luciferase assay confirmed that PTEN was a direct target gene of miR-524 and that miR-524 induced proliferation of osteosarcoma cells through activation of the PI3K/AKT pathway via inhibition of PTEN.ConclusionsMiR-524 induces the proliferation of osteosarcoma cells through activation of the PI3K/AKT pathway via inhibition of the target gene PTEN, which provides a theoretical basis for selecting a new therapeutic target for osteosarcoma.Electronic supplementary materialThe online version of this article (10.1186/s12935-018-0612-1) contains supplementary material, which is available to authorized users.
Lumbar disc herniation (LDH) is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB) and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP) was implanted in the left L5 dorsal root ganglion (DRG) to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC), caspase-1, interleukin (IL)-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP) were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65) and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation.
IntroductionThis study aimed to elucidate the prognostic value of microRNAs (miRNAs) in patients with osteosarcoma.Materials and MethodsStudies were recruited by searching PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure, and Wanfang data-bases (final search update conducted January 2017). Eligible studies were identified and the quality was assessed using multiple search strategies.ResultsA total of 55 articles that investigated the correlation between miRNA expression and either patient survival or disease recurrence in osteosarcoma was initially identified. Among these, 30 studies were included in the meta-analysis. The results of our meta-analysis revealed that elevated levels of miR-21, miR-214, miR-29, miR-9 and miR-148a were associated with poor prognosis in osteosarcoma. Additionally, downregulated miR-382, miR26a, miR-126, miR-195 and miR-124 expression indicated poor prognosis in osteosarcoma.ConclusionsmiRNAs may act as independent prognostic factors in patients with osteosarcoma and are useful in stratifying risk.
Background Low back pain has become a serious social and economic burden and the leading cause of disability worldwide. Among a variety of pathophysiological triggers, intervertebral disc (IVD) degeneration plays a primary underlying role in causing such pain. Specifically, multiple independent endplate changes have been implicated in the initiation and progression of IVD degeneration. Methods In this study, we built a signaling network comprising both well-characterized IVD pathology-associated proteins as well as some potentially correlated proteins that have been associated with one or more of the currently known pathology-associated proteins. We then screened for the potential IVD degeneration-associated proteins using patients’ normal and degenerative endplate specimens. Short hairpin RNAs for receptor interacting serine/threonine kinase 1 ( RIPK1 ) were constructed to examine the effects of RIPK1 knockdown in primary chondrocyte cells and in animal models of caudal vertebra intervertebral disc degeneration in vivo. Results RIPK1 was identified as a potential IVD degeneration-associated protein based on IVD pathology-associated signaling networks and the patients’ degenerated endplate specimens. Construction of the short hairpin RNAs was successful, with short-term RIPK1 knockdown triggering inflammation in the primary chondrocytes, while long-term knockdown triggered apoptosis through cleavage of the caspase 3 pathway, down-regulated NF-κB and mitogen-activating protein kinase (MAPK)s cascades, and decreased cell survival and inflammation. Animal models of caudal vertebra intervertebral disc degeneration further demonstrated that apoptosis was induced by up-regulation of tumor necrosis factor (TNF) accompanied by down-regulation of NF-κB and MAPKs cascades that are dependent on caspase and RIPK1. Conclusions These results provide proof-of-concept for developing novel therapies to combat IVD degeneration through interfering with RIPK1-mediated apoptosis signaling pathways especially in patients with RIPK1 abnormality. Electronic supplementary material The online version of this article (10.1186/s12967-019-1886-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.