Local and general anesthesia are the main techniques used during percutaneous kyphoplasty (PKP); however, both are associated with adverse reactions. Monitored anesthesia with dexmedetomidine may be the appropriate sedative and analgesic technique. Few studies have compared monitored anesthesia with other anesthesia modalities during PKP. Our aim was to determine whether monitored anesthesia is an effective alternative anesthetic approach for PKP. One hundred sixty-five patients undergoing PKP for osteoporotic vertebral compression fractures (OVCFs) were recruited from a single center in this prospective, non-randomized controlled study. PKP was performed under local anesthesia with ropivacaine (n = 55), monitored anesthesia with dexmedetomidine (n = 55), and general anesthesia with sufentanil/propofol/sevoflurane (n = 55). Perioperative pain was assessed using a visual analogue score (VAS). Hemodynamic variables, operative time, adverse effects, and perioperative satisfaction were recorded. The mean arterial pressure (MAP), heart rate, VAS, and operative time during monitored anesthesia were significantly lower than local anesthesia. Compared with general anesthesia, monitored anesthesia led to less adverse anesthetic effects. Monitored anesthesia had the highest perioperative satisfaction and the lowest VAS 2 h postoperatively; however, the monitored anesthesia group had the lowest MAP and heart rate 2 h postoperatively. Based on better sedation and analgesia, monitored anesthesia with dexmedetomidine achieved better patient cooperation, a shorter operative time, and lower adverse events during PKP; however, the MAP and heart rate in the monitored anesthesia group should be closely observed after surgery.
Background: The effect of a bolus dose of dexmedetomidine on intraoperative neuromonitoring (IONM) parameters during spinal surgeries has been variably reported and remains a debated topic.Methods: A randomized, double-blinded, placebo-controlled study was performed to assess the effect of dexmedetomidine (1 μg/kg in 10 min) followed by a constant infusion rate on IONM during thoracic spinal decompression surgery (TSDS). A total of 165 patients were enrolled and randomized into three groups. One group received propofol- and remifentanil-based total intravenous anesthesia (TIVA) (T group), one group received TIVA combined with dexmedetomidine at a constant infusion rate (0.5 μg kg−1 h−1) (D1 group), and one group received TIVA combined with dexmedetomidine delivered in a loading dose (1 μg kg−1 in 10 min) followed by a constant infusion rate (0.5 μg kg−1 h−1) (D2 group). The IONM data recorded before test drug administration was defined as the baseline value. We aimed at comparing the parameters of IONM.Results: In the D2 group, within-group analysis showed suppressive effects on IONM parameters compared with baseline value after a bolus dose of dexmedetomidine. Furthermore, the D2 group also showed inhibitory effects on IONM recordings compared with both the D1 group and the T group, including a statistically significant decrease in SSEP amplitude and MEP amplitude, and an increase in SSEP latency. No significance was found in IONM parameters between the T group and the D1 group.Conclusion: Dexmedetomidine delivered in a loading dose can significantly inhibit IONM parameters in TSDS. Special attention should be paid to the timing of a bolus dose of dexmedetomidine under IONM. However, dexmedetomidine delivered at a constant speed does not exert inhibitory effects on IONM data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.