Rare earth nickel-based perovskite oxides (RENiO3) have been widely studied over recent decades because of their unique properties. In the synthesis of RENiO3 thin films, a lattice mismatch frequently exists between the substrates and the thin films, which may affect the optical properties of RENiO3. In this paper, the first-principles calculations were employed to study the electronic and optical properties of RENiO3 under strain. The results showed that with the increase in tensile strength, the band gap generally shows a widening trend. For optical properties, the absorption coefficients increase with the enhancement of photon energies in the far-infrared range. The compressive strain increases the light absorption, while the tensile strain suppresses it. For the reflectivity spectrum in the far-infrared range, a minimum reflectivity displays around the photon energy of 0.3 eV. The tensile strain enhances the reflectivity in the range of 0.05–0.3 eV, whereas it decreases it when the photon energies are larger than 0.3 eV. Furthermore, machine learning algorithms were applied and found that the planar epitaxial strain, electronegativity, volume of supercells, and rare earth element ion radius play key roles in the band gaps. Photon energy, electronegativity, band gap, the ionic radius of the rare earth element, and the tolerance factor are key parameters significantly influencing the optical properties.
Aging is indispensable for balancing the strength and ductility of selective laser melted (SLM) precipitation hardening steels. This work investigated the influence of aging temperature and time on the microstructure and mechanical properties of SLM 17-4 PH steel. The 17-4 PH steel was fabricated by SLM under a protective argon atmosphere (99.99 vol.%), then the microstructure and phase composition after different aging treatments were characterized via different advanced material characterization techniques, and the mechanical properties were systematically compared. Coarse martensite laths were observed in the aged samples compared with the as-built ones, regardless of the aging time and temperature. Increasing the aging temperature resulted in a larger grain size of the martensite lath and precipitation. The aging treatment induced the formation of the austenite phase with a face-centered cubic (FCC) structure. With prolonged aging treatment, the volume fraction of the austenite phase increased, which agreed with the EBSD phase mappings. The ultimate tensile strength (UTS) and yield strength gradually increased with increasing aging times at 482 °C. The UTS reached its peak value after aging for 3 h at 482 °C, which was similar to the trend of microhardness (i.e., UTS = 1353.4 MPa). However, the ductility of the SLM 17-4 PH steel decreased rapidly after aging treatment. This work reveals the influence of heat treatment on SLM 17-4 steel and proposes an optimal heat-treatment regime for the SLM high-performance steels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.