O(2)-plasma-oxidized multiwalled carbon nanotubes (po-MWCNTs) have been used as an adsorbent for adsorption of lead(II) in water. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy measurements show that the bulk properties of MWCNTs were not changed after O(2)-plasma oxidation. The adsorption capacity of MWCNTs for lead(II) was greatly enhanced after plasma oxidation mainly because of the introduction of oxygen-containing functional groups onto the surface of MWCNTs. The removal of lead(II) by po-MWCNTs occurs rather quickly, and the adsorption kinetics can be well described by the pseudo-second-order model. The adsorption isotherm of lead(II) onto MWCNTs fits the Langmuir isotherm model. The adsorption of lead(II) onto MWCNTs is strongly dependent upon the pH values. X-ray photoelectron spectroscopy analysis shows that the adsorption mechanism is mainly due to the chemical interaction between lead(II) and the surface functional groups of po-MWCNTs. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) calculated from the adsorption isotherms suggest that the adsorption of lead(II) onto MWCNTs is endothermic and spontaneous. The regeneration performance shows that lead(II) can be easily regenerated from po-MWCNTs by altering the pH values of the solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.