We report on a prototype protocol for the automatic and fast construction of congruous sets of QM/MM models of rhodopsin-like photoreceptors and of their mutants. In the present implementation the information required for the construction of each model is essentially a crystallographic structure or a comparative model complemented with information on the protonation state of ionizable side chains and distributions of external counterions. Starting with such information, a model formed by a fixed environment system, a flexible cavity system, and a chromophore system is automatically generated. The results of the predicted vertical excitation energy for 27 different rhodopsins including vertebrate, invertebrate, and microbial pigments indicate that such basic models could be employed for predicting trends in spectral changes and/or correlate the spectral changes with structural variations in large sets of proteins.
Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H-C=C-H double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.
The developments of the open-source chemistry software environment since spring 2020 are described,
with a focus on novel functionalities accessible in the stable branch
of the package or via interfaces with other packages. These developments
span a wide range of topics in computational chemistry and are presented
in thematic sections: electronic structure theory, electronic spectroscopy
simulations, analytic gradients and molecular structure optimizations,
ab initio molecular dynamics, and other new features. This report
offers an overview of the chemical phenomena and processes can address, while showing that is an attractive platform for state-of-the-art
atomistic computer simulations.
Spectral data show that the photoisomerization of retinal protonated Schiff base (rPSB) chromophores occurs on a 100 fs time scale or less in vertebrate rhodopsins, it is several times slower in microbial rhodopsins and it is between one and 2 orders of magnitude slower in solution. These time scale variations have been attributed to specific modifications of the topography of the first excited state potential energy surface of the chromophore. However, it is presently not clear which specific environment effects (e.g., electrostatic, electronic, or steric) are responsible for changing the surface topography. Here, we use QM/MM models and excited state trajectory computations to provide evidence for an increase in electronic mixing between the first and the second excited state of the chromophore when going from vertebrate rhodopsin to the solution environments. Ultimately, we argue that a correlation between the lifetime of the first excited state and electronic mixing between such state and its higher neighbor, may have been exploited to evolve rhodopsins toward faster isomerization and, possibly, light-sensitivity.
The activation of rhodopsin, the light-sensitive G-protein-coupled receptor responsible for dim-light vision in vertebrates, is driven by an ultrafast excited-state double-bond isomerization with a quantum efficiency of almost 70%. The origin of such light sensitivity is not understood and a key question is whether in-phase nuclear motion controls the quantum efficiency value. In this study we used hundreds of quantum-classical trajectories to show that, 15 fs after light absorption, a degeneracy between the reactive excited state and a neighbouring state causes the splitting of the rhodopsin population into subpopulations. These subpopulations propagate with different velocities and lead to distinct contributions to the quantum efficiency. We also show here that such splitting is modulated by protein electrostatics, thus linking amino acid sequence variations to quantum efficiency modulation. Finally, we discuss how such a linkage that in principle could be exploited to achieve higher quantum efficiencies would simultaneously increase the receptor thermal noise leading to a trade-off that may have played a role in rhodopsin evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.