Amentoflavone is an active phenolic compound isolated from Selaginella tamariscina over 40 years. Amentoflavone has been extensively recorded as a molecule which displays multifunctional biological activities. Especially, amentoflavone involves in anti-cancer activity by mediating various signaling pathways such as extracellular signal-regulated kinase (ERK), nuclear factor kappa-B (NF-κB) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and emerges anti-SARS-CoV-2 effect via binding towards the main protease (Mpro/3CLpro), spike protein receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Therefore, amentoflavone is considered to be a promising therapeutic agent for clinical research. Considering the multifunction of amentoflavone, the current review comprehensively discuss the chemistry, the progress in its diverse biological activities, including anti-inflammatory, anti-oxidation, anti-microorganism, metabolism regulation, neuroprotection, radioprotection, musculoskeletal protection and antidepressant, specially the fascinating role against various types of cancers. In addition, the bioavailability and drug delivery of amentoflavone, the molecular mechanisms underlying the activities of amentoflavone, the molecular docking simulation of amentoflavone through in silico approach and anti-SARS-CoV-2 effect of amentoflavone are discussed.
Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a multifunctional protein participated in diverse cellular processes, including chromosome remodeling, cell differentiation and development. CHD1L is a regulator of chromosomal integrity maintenance, DNA repair and transcriptional regulation through its bindings to DNA. By regulating kinds of complex networks, CHD1L has been identified as a potent anti-apoptotic and pro-proliferative factor. CHD1L is also an oncoprotein since its overexpression leads to dysregulation of related downstream targets in various cancers. The latest advances in the functional molecular basis of CHD1L in normal cells will be described in this review. As the same time, we will describe the current understanding of CHD1L in terms of structure, characteristics, function and the molecular mechanisms underlying CHD1L in tumorigenesis. We inference that the role of CHD1L which involve in multiple cellular processes and oncogenesis is well worth further studying in basic biology and clinical relevance.
Worldwide, ovarian cancer (OC) is the seventh common cancer and the second most common cause of cancer death in women. Due to high rates of relapse, there is an urgent need for the identification of new targets for OC treatment. The far-upstream element binding protein 1 (FBP1) and enhancer of zeste homolog 2 (EZH2) are emerging proto-oncogenes that regulate cell proliferation and metastasis. In the present study, Oncomine data analysis demonstrated that FBP1 was closely associated with the development of OC, and The Cancer Genome Atlas (TCGA) data analysis indicated that there was a positive correlation between FBP1 and EZH2 in ovarian tissues. Moreover, we found that FBP1 knockdown suppressed tumor formation in nude mice and cisplatin resistance of OC cells, but the role of FBP1 in the cisplatin resistance of OC cells remained unclear. In addition, we verified physical binding between FBP1 and EZH2 in OC cells, and we demonstrated that FBP1 knockdown enhanced cisplatin cytotoxicity in OC cells and downregulated EZH2 expression and trimethylation of H3K27. These results suggested that FBP1 increases cisplatin resistance of OC cells by upregulating EZH2/H3K27me3. Thus, FBP1 is a prospective novel target for the development of OC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.