With the development of autonomous car, a vehicle is capable to sense its environment more precisely. That allows improved drving behavior decision strategy to be used for more safety and effectiveness in complex scenarios. In this paper, a decision making framework based on hierarchical state machine is proposed with a top-down structure of three-layer finite state machine decision system. The upper layer classifies the driving scenario based on relative position of the vehicle and its surrounding vehicles. The middle layer judges the optimal driving behavior according to the improved energy efficiency function targeted at multiple criteria including driving efficiency, safety and the grid-based lane vacancy rate. The lower layer constructs the state transition matrix combined with the calculation results of the previous layer to predict the optimal pass way in the region. The simulation results show that the proposed driving strategy can integrate multiple criteria to evaluate the energy efficiency value of vehicle behavior in real time, and realize the selection of optimal vehicle driving strategy. With popularity of automatic vehicles in future, the driving strategy can be used as a reference to provide assistance for human drive or even the real-time decision-making of autonomous driving.
Accurate traffic flow forecasting is a critical component in intelligent transportation systems. However, most of the existing traffic flow prediction algorithms only consider the prediction under normal conditions, but not the influence of weather attributes on the prediction results. This study applies a hybrid deep learning model based on multi feature fusion to predict traffic flow considering weather conditions. A comparison with other representative models validates that the proposed spatial‐temporal fusion graph convolutional network (STFGCN) can achieve better performance.
Toll-gates are crucial points of management and key congestion bottleneck for the freeway. In order to avoid traffic deterioration and alleviate traffic congestion in advance, it is necessary to predict and evaluate the congestion in toll-gates scattering in large-scale region of freeway network. In this paper, traffic volume and operational delay time are selected from various traffic indicators to evaluate congestion considering the particular characteristics of the traffic flow within the toll-gate area. The congestion prediction method is designed including two modules: a deep learning (DL) prediction and a fuzzy evaluation. We propose a modified deep learning method based on graph convolutional network (GCN) structure in the fusion of dilated causal mechanism and optimize the method for spatial feature extraction by constructing a new adjacency matrix. This new AI network could process spatiotemporal information of traffic volume and operational delay time, that extracted from large-scaled toll-gates spontaneously, and predict key indicators in 15/30/60 min future time. The evaluation module is proposed based on these predicted results. Then, fuzzy C-means algorithm (FCM) is further modified by determining coupling weight for these two key indicators to detect congestion state. Original traffic data are obtained from the current 186 toll-gates served on the freeway network in Shaanxi Province, China. Experimental tests are carried out based on historical data of four months after preprogressing. The comparative tests show the proposed CPT-DF (congestion prediction on toll-gates using deep learning and fuzzy evaluation) outperforms the current-used other models by 6-15%. The successful prediction could extend to the real-time prediction and early warning of traffic congestion in the toll system to improve the intelligent level of traffic emergency management and guidance on the key road of disasters to some extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.