Extensive research indicates that tumor stemness promotes tumor progression. Nonetheless, the underlying roles of stemness-related genes in renal clear cell carcinoma (ccRCC) are unclear. Data used in bioinformatics analysis were downloaded from The Cancer Genome Atlas (TCGA) database. Moreover, the R software, SPSS, and GraphPad Prism 8 were used for mapping and statistical analysis. First, the stemness index of each patient was quantified using a machine learning algorithm. Subsequently, the differentially expressed genes between high and low stemness index were identified as stemness-related genes. Based on these genes, a stable and effective prognostic model was identified to predict the overall survival of patients using a random forest algorithm (Training cohort; 1-year AUC: 0.67; 3-year AUC: 0.79; 5-year AUC: 0.73; Validation cohort; 1-year AUC: 0.66; 3-year AUC: 0.71; 5-year AUC: 0.7). The model genes comprised AC010973.2, RNU6-125P, AP001209.2, Z98885.1, KDM5C-IT1, and AL021368.3. Due to its highest importance evaluated by randomforst analysis, the AC010973.2 gene was selected for further research. In vitro experiments demonstrated that AC010973.2 is highly expressed in ccRCC tissue and cell lines. Meanwhile, its knockdown could significantly inhibit the proliferation of ccRCC cells based on colony formation and CCK8 assays. In summary, our findings reveal that the stemness-related gene AC01097.3 is closely associated with the survival of patients. Besides, it remarkably promotes cell proliferation in ccRCC, hence a novel potential therapeutic target.
A new oxide NaCu 3 Fe 2 Os 2 O 12 is synthesized using high pressure and temperature conditions. The Rietveld structural analysis shows that the compound possesses both A-and B-site ordered quadruple perovskite structure in Pn3̅ symmetry. The valence states of transition metals are confirmed to be Cu 2+ /Fe 3+ /Os 5.5+ . The three transition metals all take part in magnetic interactions and generate strong Cu 2+ (↑)Fe 3+ (↑)Os 5.5+ (↓) ferrimagnetic superexchange interactions with a high Curie temperature about 380 K. Electrical transport measurements suggest its half-metallic properties. The first-principles theoretical calculations demonstrate that the compound has a spin-down conducting band and a spin-up insulating band with a wide energy gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.