At present, the incidence rate of diabetes is increasing gradually, and inhibiting α-glucosidase is one of the effective methods used to control blood sugar. This study identified new peptides from rice bran fermentation broth and evaluated their inhibitory activity and mechanism against α-glucosidase. Rice bran was fermented with Bacillus subtilis MK15 and the polypeptides of <3 kDa were isolated by ultrafiltration and chromatographic column, and were then subjected to LC-MS/MS mass spectrometry analysis. The results revealed that the oligopeptide GLLGY showed the greatest inhibitory activity in vitro. Docking studies with GLLGY on human α-glucosidase (PDB ID 5NN8) suggested a binding energy of −7.1 kcal/mol. GLLGY acts as a non-competitive inhibitor and forms five hydrogen bonds with Asp282, Ser523, Asp616, and His674 of α-glucosidase. Moreover, it retained its inhibitory activity even in a simulated digestion environment in vitro. The oligopeptide GLLGY could be developed into a potential anti-diabetic agent.
Pullulanase (EC 3.2.1.41) belongs to the amylase family and is often used alone or in combination with other amylases in the industrial production of starch-based products. This enzyme is often required in industrial production because of its better stability. We here truncated the pullulanase gene from the deep-sea hydrothermal anaerobic archaeon Thermococcus siculi HJ21 and obtained Pul-HJΔ782, which is a member of the α-amylase family GH57. The results revealed that the optimum temperature for Pul-HJΔ782 was 100 °C, and its thermostability at 100 °C improved after truncation. Less than 15% of its enzyme activity was lost after 1 h of incubation at 100 °C, and 57% activity remained after 5 h of treatment. Truncation significantly improved the overall pH tolerance range of Pul-HJΔ782, and its stability in the pH range 4–8 was over 80% relative activity from an average of 60%. The sequence and structural model of Pul-HJΔ782 was analyzed, and its instability index was reduced significantly. Furthermore, the hydrolysates of the truncated and wild-type pullulanase were analyzed, and the enzymatic digestion efficiency of the truncated Pul-HJΔ782 was higher.
Misgurnus anguillicaudatus (loach) is a widely distributed benthic fish in Asia. In this study, the alkaline protease was used to hydrolyze loach, and the hydrolysate products of different molecular weights were obtained by membrane separation. In vitro antioxidant assays showed that the <3 kDa fraction (SLH-1) exhibited the strongest antioxidant activity (DPPH, hydroxyl radical and superoxide radical scavenging ability, and reducing power), while SLH-1 was purified by gel filtration chromatography, and peptide sequences were identified by LC-MS/MS. A total of six peptides with antioxidant activity were identified, namely SERDPSNIKWGDAGAQ (D-1), TVDGPSGKLWR (D-2), NDHFVKL (D-3), AFRVPTP (D-4), DAGAGIAL (D-5), and VSVVDLTVR (D-6). In vitro angiotensin-converting enzyme (ACE) inhibition assay and pancreatic cholesterol esterase (CE) inhibition assay, peptide D-4 (IC50 95.07 μg/mL, 0.12 mM) and D-2 inhibited ACE, and peptide D-2 (IC50 3.19 mg/mL, 2.62 mM), D-3, and D-6 acted as pancreatic CE inhibitors. The inhibitory mechanisms of these peptides were investigated by molecular docking. The results showed that the peptides acted by binding to the key amino acids of the catalytic domain of enzymes. These results could provide the basis for the nutritional value and promote the type of healthy products from hydrolyzed loach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.