As a significant factor in urban planning, traffic forecasting and prediction of epidemics, modeling patterns of human mobility draws intensive attention from researchers for decades. Power-law distribution and its variations are observed from quite a few real-world human mobility datasets such as the movements of banking notes, trackings of cell phone users' locations and trajectories of vehicles. In this paper, we build models for 20 million trajectories with fine granularity collected from more than 10 thousand taxis in Beijing. In contrast to most models observed in human mobility data, the taxis' traveling displacements in urban areas tend to follow an exponential distribution instead of a power-law. Similarly, the elapsed time can also be well approximated by an exponential distribution. Worth mentioning, analysis of the interevent time indicates the bursty nature of human mobility, similar to many other human activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.