Under the influence of COVID-19, online office and online education has ushered in a golden period of development. The teaching quality of online education has been a controversial issue. Our study takes online course teaching quality assessment as the starting point, explores the influencing factors of online course quality assessment with online courses as the research object, and analyzes the latest research proposal for an online course quality index. To make the online course quality assessment more intelligent, we propose an online course quality assessment method based on a fuzzy neural network. The method uses fuzzy rules as the baseline and adds a TSK perception mechanism to expand the perception domain of the fuzzy neural network and improve the course quality index prediction accuracy. At the input side of the fuzzy neural network, we preclassify the online course data into four parts, and each part of the data represents a different assessment domain. Due to the large data cost, we expanded the collective amount of data using data augmentation methods. In addition, we parse the structure of the fuzzy neural network hierarchy and introduce the construction and role of the TSK perception mechanism in the fuzzy rules. An optimal learning strategy is proposed in the fuzzy neural network training. Finally, in the experimental session, we verify the effectiveness of data augmentation and explore the distribution of course quality assessment weights. In the comparison of the model prediction results with the actual assessment results, our method achieves an excellent matching rate, which proves the high efficiency of our method in the online course quality assessment system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.