For helpful comments, we thank René Stulz, MikeWeisbach, IngridWerner, and other seminar participants at The Ohio State University. This paper is a new incarnation of the defunct work previously circulated under the titles "Neoclassical Factors," "An equilibrium three-factor model," "Production-based factors," "A better three-factor model that explains more anomalies," and "An alternative three-factor model." We are extremely grateful to Robert Novy-Marx for identifying a timing error in the empirical analysis of the defunct work. All remaining errors are our own. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
We have benefited from helpful discussions with Stijn van Nieuwerburgh and René Stulz. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
Most anomalies fail to hold up to currently acceptable standards for empirical finance. With microcaps mitigated via NYSE breakpoints and value-weighted returns, 65% of the 452 anomalies in our extensive data library, including 96% of the trading frictions category, cannot clear the single test hurdle of the absolute $t$-value of 1.96. Imposing the higher multiple test hurdle of 2.78 at the 5% significance level raises the failure rate to 82%. Even for replicated anomalies, their economic magnitudes are much smaller than originally reported. In all, capital markets are more efficient than previously recognized.
Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.