Interlayer excitons have been extensively studied in monolayer transition metal dichalcogenide (TMD) heterobilayers mainly due to the long lifetime, which is beneficial for a wide range of optoelectronic applications. To date, the majority of investigations of interlayer excitons in TMD heterobilayers have been focusing on the geometric arrangement of structures, spin–valley lifetime, and interlayer valley excitons with interlayer hopping rules. Nevertheless, interlayer excitons in TMD heterobilayers strongly depend on the local atomic registry and coupling strength, which increase the complexity of the device fabrication. Here, we report pronounced interlayer exciton emission in two-dimensional (2D) perovskite/monolayer TMD heterostructures without the need of thermal annealing or specific geometric arrangements, and the interlayer exciton emission is rather general among 2D perovskites and monolayer TMDs. Such interlayer exciton emission completely dominates the emission spectrum at 78 K regardless of the stacking sequence, suggesting the robust interlayer coupling in 2D perovskite/monolayer TMD heterostructures. Furthermore, the interlayer exciton emission shows a large blue-shift with increasing laser intensity due to the repulsive dipole–dipole interaction and can persist above 220 K. Importantly, the interlayer exciton emission also possesses robust circular polarization in chiral 2D perovskite/monolayer WSe2 heterostructures, which can be applied to manipulate the valley degree of freedom for valleytronic devices. Our findings would provide a favorable platform to explore interlayer coupling and related physical processes in 2D perovskites and TMDs and further provoke more investigations into the understanding and controlling of excitonic effects and associated optoelectronic applications in van der Waals heterostructures over a broad-range spectral response.
Two-dimensional (2D) perovskites show great potential for optoelectronic applications due to their bandgap tunability, extremely large excition binding energy, and large crystal anisotropy compared with their three-dimensional counterparts. To fully explore exciton-based applications and improve their performance, it is essential to understand the exciton behavior in 2D perovskites. Here, we investigate exciton anisotropy within the crystallographic plane and cross plane of (C4H9NH3)2PbI4 2D perovskite crystals by polarization-resolved photoluminescence, reflection, and photoconductivity studies. We observe a polarization-dependent emission evolution and an enhanced self-trapped exciton emission with an oblique incident excitation from the cross plane. Furthermore, the anisotropy of excitons in (C4H9NH3)2PbI4 2D perovskite crystals is identified by polarization-resolved photoluminescence and photoconductivity measurement, and a completely opposite polarization-dependent behavior was observed for free excitons and self-trapped excitons. We attribute this different anisotropy to the existence of out-of-plane excitons and different optical selection rule for free excitons and self-trapped excitons. Our findings will shed light on designing and improving the performance of exciton-based optoelectronic devices in 2D perovskites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.