A new method to generate radar air intelligent information by using data mining techniques based on historical radar data is proposed. This method has two stages: One is “filtering separation - piecewise fitting - feature clustering". In this stage, the radar historical data is divided into the actual true track and noise. Through computing the second-order discrete curvature, the actual true track is decomposed into several segments, such as straight line and arc, which are fitted with multinomial subsequently. On this basis, after analyzing the characteristic vector of radar historical data, the clustering database is established; the other is “feature association-track recombination”. The track in pre-deigned air scenario is segmented by the second-order discrete curvature. After the correlative feature information of the segmented scenario is searched, matched and associated with the information in clustering database, a new track will be restructured by using this output results. This method is very available for its effective application in simulation test-bed of C3I system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.