The intracellular glutathione levels and developmental competence of aged oocytes after parthenogenetic activation, somatic cell nuclear transfer and intracytoplasmic sperm injection in the presence or absence of caffeine or dithiothreitol (DTT) were examined. The following results were found: (1) ovine oocytes were fully aged 30 h post-onset of maturation culture; (2) the appropriate concentrations of caffeine and DTT for oocyte culture were 5 mM and 1 mM, respectively; (3) when nuclear transfer-reconstructed embryos were treated with caffeine or DTT following fusion, no increase in the frequency of development to blastocyst was observed (P > 0.05), but the cell numbers of blastocysts increased (P < 0.05); (4) both caffeine and DTT increased the blastocyst formation rates of intracytoplasmic sperm-injected embryos (P < 0.05); (5) caffeine increased the glutathione content of aged oocytes (P < 0.05). The glutathione content of DTT-treated aged oocytes was higher than that of oocytes matured for 36 h (P < 0.05). In conclusion, caffeine and dithiothreitol delay oocyte ageing but only to a limited extent.
The high concentration of secondary branched wool follicles is a distinctive feature of the Merino sheep. At present, the molecular control of the development and branching of secondary wool follicles (SF) remains elusive. To reveal the potential genes associated with the development of hair follicles, we investigated the characteristics of prenatal and postnatal development of wool follicles, and the transcriptional expression profile in fetuses/lambs from dams under either maternal maintenance or sub-maintenance (75% maintenance) nutrition. The density of SF and the ratio of SF to primary wool follicles (PF) were reduced (p < 0.05) in fetuses from day 105 to 135 of gestation under sub-maintenance nutrition. Differentially expressed genes were enriched in the binding, single-organism process, cellular process, cell and cell part Gene Ontology (GO) functional categories and metabolism, apoptosis, and ribosome pathways. Four candidate genes, SFRP4, PITX1, BAMBI, and KRT16, which were involved in secondary wool follicles branching and development, were identified. Our results indicate that nutritional intervention imposed on pregnant ewes by short-term sub-maintenance nutrition could provide a strategy for the study of wool follicle development. Overall insight into the global gene expression associated with SF development can be used to investigate the underlying mechanisms of SF branching in Merino sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.