Hepatocellular carcinoma (HCC) is a highly malignant tumor, and chronic infection with hepatitis B virus is one of its major risk factors. To identify the proteins involved in HCC carcinogenesis, we used two-dimensional fluorescence DIGE to study the differentially expressed proteins in tumor and adjacent nontumor tissue samples. Samples from 12 hepatitis B virus-associated HCC patients were analyzed. A total of 61 spots were significantly up-regulated (ratio > 2, p < 0.01) in tumor samples, whereas 158 spots were down-regulated (ratio < ؊2, p < 0.01). Seventyone gene products were identified among these spots. Members of the heat shock protein 70 and 90 families were simultaneously up-regulated, whereas metabolismassociated proteins were decreased in HCC samples. The down-regulation of mitochondrial and peroxisomal proteins in these results suggested loss of special organelle functions during HCC carcinogenesis. Four metabolic enzymes involved in the methylation cycle in the liver were down-regulated in HCC tissues, indicating S-adenosylmethionine deficiency in HCC. Two gene products, glyceraldehyde-3-phosphate dehydrogenase and formimidoyltransferase-cyclodeaminase, were identified from inversely altered spots, suggesting that different isoforms or post-translational modifications of these two proteins might play different roles in HCC. For the first time, the overexpression of Hcp70/Hsp90-organizing protein and heterogeneous nuclear ribonucleoproteins C1/C2 in HCC tissues was confirmed by Western blot and then by immunohistochemistry staining in 70 HCC samples, suggesting their potential as protein tumor markers. In summary, we profiled proteome alterations in HCC tissues, and these results may provide useful insights for understanding the mechanism involved in the process of Proteomics analysis is currently considered to be a powerful tool for global evaluation of protein expression, and proteomics has been widely applied in analysis of diseases, especially in fields of cancer research. Quantitative protein expression profiling is a crucial part of proteomics, and such profiling requires methods that are able to efficiently provide accurate and reproducible differential expression values for proteins in two or more biological samples. Two-dimensional electrophoresis (2DE) 1 was a technique that was widely used for proteomics research. However, intergel variation and excessive time/labor costs have been common problems with standard 2DE. Two-dimensional (2D) DIGE might therefore be considered as one of the most significant advances in quantitative proteomics. Using the 2D DIGE approach, different samples prelabeled with mass-and charge-matched fluorescent cyanine dyes are co-separated in the same 2D gel, and an internal standard is used in every gel that has negated the problem of intergel variation (1). Moreover with the great sensitivity and dynamic range that is afforded by these dyes, 2D DIGE can give greater accuracy of quantitation than silver staining (2). It has been reported that the correlation betw...
MBL gene polymorphisms were significantly associated with susceptibility to SARS-CoV infection; this might be explained by the reduced expression of functional MBL secondary to having the codon 54 variant.
Nonalcoholic fatty liver disease (NAFLD) has emerged as a common public health problem that can progress to end-stage liver disease. A high-fat diet (HFD) may promote the development of NAFLD through a mechanism that is poorly understood. We adopted a proteomic approach to examine the effect of HFD on the liver proteome during the progression of NAFLD. Male Sprague-Dawley rats fed an HFD for 4, 12, and 24 weeks replicated the progression of human NAFLD: steatosis, nonspecific inflammation, and steatohepatitis. Using two-dimensional difference gel electrophoresis (DIGE) combined with matrix-assisted laser desorption ionization time of flight/time of flight analysis, 95 proteins exhibiting significant changes (ratio > 1.5 or <؊1.5, P < 0.05) during the development of NAFLD were identified. Biological functions for these proteins reflected phase-specific characteristics during the progression of the disease. The potential role of enoyl-coenzyme A hydratase (ECHS1), an enzyme that catalyzes the second step of mitochondrial fatty acid beta-oxidation, received further investigation. First, the reduced protein level of ECHS1 was validated both in rat models and in patients with biopsy-proven hepatic simple steatosis via immunoblotting or immunohistochemical analysis. Then the small interfering RNA (siRNA)-mediated knockdown of ECHS1 in the murine hepatocyte cell line alpha mouse liver 12 (AML12) demonstrated increased cellular lipid accumulation induced by free fatty acid (FFA) overload. Furthermore, using a hydradynamic transfection method, the in vivo silencing effect of siRNA duplexes targeting ECHS1 was further investigated in mice. Administering ECHS1 siRNA specifically reduced the expression of ECHS1 protein in mice liver, which significantly exacerbated the hepatic steatosis induced by an HFD. Conclusion: Our results revealed that ECHS1 down-regulation contributed to HFD-induced hepatic steatosis, which may help clarify the pathogenesis of NAFLD and point to potential targets for therapeutic interventions. (HEPATOLOGY 2010;51:1190-1199
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.