In this paper, the relationship between the classical Dicke-Jaynes-Cummings-Gaudin (DJCG) model and the nonlinear Schrödinger (NLS) equation is studied. It is shown that the classical DJCG model is equivalent to a stationary NLS equation. Moreover, the standard NLS equation can be solved by the classical DJCG model and a suitably chosen higher order flow. Further, it is also shown that classical DJCG model can be transformed into the classical Gaudin spin model in an external magnetic field through a deformation of Lax matrix. Finally, the separated variables are constructed on the common level sets of Casimir functions and the generalized action-angle coordinates are introduced via the Hamilton-Jacobi equation.
On the basis of two sets of Lenard recursion sequences and zero-curvature equation associated with a matrix spectral problem, we derive the entire sine-Gordon hierarchy, which is composed of all the positive and negative flows. Using the theory of hyperelliptic curves, the Abel-Jacobi coordinates are introduced, from which the corresponding positive and negative flows are linearized. The algebro-geometric solutions of the entire sine-Gordon hierarchy are constructed by using the asymptotic properties of the meromorphic function.
<abstract><p>The $ \mathfrak{gl}_3(\mathbb{C}) $ rational Gaudin model governed by $ 3\times 3 $ Lax matrix is applied to study the three-wave resonant interaction system (TWRI) under a constraint between the potentials and the eigenfunctions. And the TWRI system is decomposed so as to be two finite-dimensional Lie-Poisson Hamiltonian systems. Based on the generating functions of conserved integrals, it is shown that the two finite-dimensional Lie-Poisson Hamiltonian systems are completely integrable in the Liouville sense. The action-angle variables associated with non-hyperelliptic spectral curves are computed by Sklyanin's method of separation of variables, and the Jacobi inversion problems related to the resulting finite-dimensional integrable Lie-Poisson Hamiltonian systems and three-wave resonant interaction system are analyzed.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.