Cartilage extracellular matrix contains antiadhesive and antiangiogenic molecules such as chondromodulin‐1, thrombospondin‐1, and endostatin. We have aimed to develop a cross‐linked cartilage acellular matrix (CAM) barrier for peritendinous adhesion prevention. CAM film was fabricated using decellularized porcine cartilage tissue powder and chemical cross‐linking. Biochemical analysis of the film showed retention of collagen and glycosaminoglycans after the fabrication process. Physical characterization of the film showed denser collagen microstructure, increased water contact angle, and higher tensile strength after cross‐linking. The degradation time in vivo was 14 d after cross‐linking. The film extract and film surface showed similar cell proliferation, while inhibiting cell migration and cell adhesion compared to standard media and culture plate, respectively. Application of the film after repair resulted in similar tendon healing and significantly less peritendinous adhesions in a rabbit Achilles tendon injury model compared to repair only group, demonstrated by histology, ultrasonography, and biomechanical testing. In conclusion, the current study developed a CAM film having biological properties of antiadhesion, together with biomechanical properties and degradation profile suitable for prevention of peritendinous adhesions.
To regenerate tissue engineered cartilage as a source for the restoration of cartilage defects, we used a human fetal cartilage progenitor cell (hFCPC) pellet for improve the chondrogenesis and modulation the immune response with a In vivo (IV) bioreactor system, that was buried subcutaneously in the host and then implanted into a cartilage defect. In vivo bioreactor (IVB) was composed of silicone tube and cellulose nanopore-size membrane. FCPC pellets were first cultured in vitro for 3 days, and then cultured in vitro, subcutaneous and IV bioreactor for 3 weeks. First evaluated the IV bioreactor fluid appearance, component and liquidity, and then evaluate chondrogenesis and immunogenicity of the pellets using gross observation, cell viability, histology, biochemical analysis, RT-PCR, and Western Blot, finally evaluates the cartilage repair and synovial inflammation using histology. The fluid color and transparency of IV bioreactor were similar to synovial fluid (SF) and the component was also close to SF compared to the serum. IV bioreactor system not only promotes the synthesis of cartilage matrix and maintains cartilage phenotype, but also delays the occurrence of calcification compared with subcutaneous. A IV bioreactor, which has been predominantly adopted to study cell differentiation, was effective in preventing host immune rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.