The work demonstrates for the first time a thermal regenerated grating (RG) operating at an ultra-high temperature up to 1400°C. A new class of photosensitive optical fiber based on erbium-doped yttrium stabilized zirconia-calcium-alumina-phospho silica (Er-YZCAPS) glass is fabricated using modified chemical vapor deposition (MCVD) process, followed by solution doping technique and conventional fiber drawing. A type-I seed grating inscribed in this fiber is thermal regenerated based on the conventional thermal annealing technique. The investigation result indicates that the produced RG has an ultrahigh temperature sustainability up to 1400°C. The measured temperature sensitivities are 14.1 and 15.1 pm/°C for the temperature ranges of 25°C-1000°C and 1000°C-1400°C, respectively.
Fiber Bragg Grating has advantages of high resistance to electromagnetic interference and high accuracy, which could obtain high-precision detection of the vibrations. A new type of accelerometer based on Fiber Bragg Grating (FBG) is proposed in this paper. The mechanical model of the accelerometer is designed as a single-degree-of-freedom system. The experiments show FBG accelerometer system has excellent stability and high durability. The acceleration sensitivity of the FBG accelerometer is 31.2pm/G.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.