Savin juniper is an excellent species for desertification control in arid and semi-arid areas, where it typically establishes under the protection of nurse plants. Ultimately, established plants emerge into full light as they grow, and this transition is accompanied by an increase in the preponderance of scale-like versus needle-like leaf forms.• To test how age and variable light environments affect shade tolerance in savin juniper, we established a pot study under field conditions, with two age cohorts (1-and 4-yearold rooted scions) and three light regimes (10%, 50% and 100% light transmittance). We measured growth, leaf parameters, photosynthesis, chlorophyll fluorescence and foliar pigments on a monthly basis (seven growing months per year, from 2015 to 2017).• Overall, there was little interaction among all variables, and both cohort and light regime had significant effects. Leaf form and spacing varied continuously, tending towards shorter, more closely spaced and more appressed scale leaves with higher dry leaf mass per area in older plants or under higher light. There were no clear age-related patterns in carotenoids but both cohort and light had significant effects on gas exchange and chlorophyll fluorescence variables.• We conclude that savin juniper shows an intermediate tolerance to shade that changes with growth in that younger plants were less tolerant of full sun than older plants, consistent with its reliance on nurse plants for ultimate establishment in the open.
Intracerebral hemorrhage (ICH) results in inflammation, and glucocorticoids have been proven to be effective inhibitors of ICH‑induced inflammation. However, the precise underlying mechanisms of ICH‑induced inflammation and glucocorticoid function remain largely undefined. Using a mouse ICH model, the present study demonstrated that the short non‑coding RNA molecule microRNA‑155 (miR‑155) is involved in the inflammatory process initiated by ICH in mice. Increased mRNA expression levels of miR‑155, as well as the pro‑inflammatory cytokines interferon‑β (IFN‑β), tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6), were observed in vivo following ICH. By contrast, the expression level of suppressor of cytokine signaling 1 (SOCS‑1) protein was reduced in the ICH group compared with control mice. Similar results were observed in vitro using astrocytes, the primary effector cells in ICH. Compared with wild type astrocytes, astrocytes overexpressing miR‑155 exhibited significant inhibition of SOCS‑1 protein expression levels. These results suggest that miR‑155 contributes to the development of ICH‑induced inflammation in mice by downregulating SOCS‑1 protein expression levels and promoting pro‑inflammatory cytokine (IFN‑β, TNF‑α and IL‑6) production. Expression levels of miR‑155 and pro‑inflammatory cytokines in the ICH group were significantly decreased following dexamethasone administration. This suggests that glucocorticoids attenuate ICH‑induced inflammation by targeting the miR‑155/SOCS‑1 signaling pathway in mice. In conclusion, the results of the present study demonstrated that the miR‑155/SOCS‑1 signaling pathway is required for ICH‑induced inflammation, and glucocorticoids inhibit this process by targeting the miR‑155/SOCS‑1 signaling pathway.
Background Deep hypothermic circulatory arrest (DHCA) is a technique used during the surgical treatment of aneurysms of the thoracic aorta in adult patients, and complex congenital heart disease in neonates. And brain microvascular endothelial cells (BMECs) are essential components of the cerebrovascular network and participate in maintaining the blood-brain barrier (BBB) and brain function. In our previous study, we found that oxygen-glucose deprivation and reoxygenation (OGD/R) activated Toll-like receptor 4 (TLR4) signaling in BMECs, and induced pyroptosis and inflammation. In this study, we further investigated the potential mechanism of ethyl(6R)-6-[N-(2-Chloro-4-fluorophenyl) sulfamoyl] cyclohex-1-ene-1-carboxylate (TAK-242) on BMECs under OGD/R, as in patients with sepsis, the TAK-242 was tested in clinical trials. Methods To confirm the function of TAK-242 on BMECs under OGD/R, cell viability, inflammatory factors, inflammation-associated pyroptosis, and nuclear factor-κB (NF-κB) signaling were determined using Cell Counting Kit-8 (CCK-8) assay, enzyme-linked immunosorbent assay (ELISA), and western blotting, respectively. To investigate the lncRNAs associated with TLR4 during OGD/R, long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) expression patterns were profiled with RNA deep sequencing. Moreover, to confirm whether lncRNA-encoded short peptides, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. Results Relative control group, OGD/R inhibited the cell viability, increased the section of inflammatory factors secretion, including IL-1β, IL-6, and TNF-α, and promoted the pathways of TLR4/NLRP3/Caspase-1 and TLR4/NF-κB. However, TAK-242 + OGD/R group promoted OGD/R cell viability, decreased OGD/R-induced inflammatory factors secretion, and inhibited the pathways of TLR4/NLRP3/Caspase-1 and TLR4/NF-κB. In addition, AABR07000411.1, AABR070006957.1, and AABR070008256.1 were decreased in OGD/R cells compared with controls, but TAK-242 restored their expression under OGD/R condition. AABR07000473.1, AC130862.4, and LOC10254972.6 were induced by OGD/R, but were suppressed in TAK-242 + OGD/R cells compared with OGD/R. Moreover, AABR07049961.1, AC127076.2, AABR07066020.1, and AABR07025303.1-encoded short peptides were dysregulated in OGD/R cells, and TAK-242 attenuated the dysregulation of AABR07049961.1, AC127076.2, and AABR07066020.1-encoded short peptides. Conclusions TAK-242 alters the expression pattern of lncRNAs in OGD/R cells, and differently expressed lncRNAs may exert a protective effect against OGD/R injury through a mechanism of competing endogenous RNA (ceRNA) and encoding short peptides. These findings maybe provide a new theory basis for the treatment of DHCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.