Extracting road information from high-resolution remote sensing images (HRI) can provide crucial geographic information for many applications. With the improvement of remote sensing image resolution, the image data contain more abundant feature information. However, this phenomenon also enhances the spatial heterogeneity between different types of roads, making it difficult to accurately discern the road and non-road regions using only spectral characteristics. To remedy the above issues, a novel residual attention and local context-aware network (RALC-Net) is proposed for extracting a complete and continuous road network from HRI. RALC-Net utilizes a dual-encoder structure to improve the feature extraction capability of the network, whose two different branches take different feature information as input data. Specifically, we construct the residual attention module using the residual connection that can integrate spatial context information and the attention mechanism, highlighting local semantics to extract local feature information of roads. The residual attention module combines the characteristics of both the residual connection and the attention mechanism to retain complete road edge information, highlight essential semantics, and enhance the generalization capability of the network model. In addition, the multi-scale dilated convolution module is used to extract multi-scale spatial receptive fields to improve the model’s performance further. We perform experiments to verify the performance of each component of RALC-Net through the ablation study. By combining low-level features with high-level semantics, we extract road information and make comparisons with other state-of-the-art models. The experimental results show that the proposed RALC-Net has excellent feature representation ability and robust generalizability, and can extract complete road information from a complex environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.