Background: Gelsemium elegans Benth(G. elegans) is a well-known toxic plant. Alkaloids are main active components of G. elegans. Currently, the metabolism of several alkaloids, such as gelsenicine, koumine, and gelsemine, has been widely studied. However, as one of the most important alkaloids in G. elegans, the metabolism of humantenine has not been studied yet. Methods: In order to elaborate on the in vitro metabolism of humantenine, a comparative analysis of its metabolic profile in human, pig, goat and rat liver microsomes was carried out using high-performance chromatography/quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS) for the first time. Results: Totally, ten metabolites of humantenine were identified in liver microsomes from human (HLMs), pig (PLMs), goat (GLMs) and rat (RLMs) based on the accurate MS/MS spectra. Five metabolic pathways of humantenine, including demethylation, dehydrogenation, oxidation, dehydrogenation and oxidation, and demethylation and oxidation, were proposed in this study. There were qualitative and quantitative species differences in the metabolism of humantenine among the four species. Conclusions: The in vitro metabolism of humantenine in HLMs, PLMs, GLMs and RLMs was studied by a sensitive and specific detection method based on HPLC/QqTOF-MS. The results indicated that there were species-related differences in the metabolism of humantenine. This work might be of great significance for the further research and explanation of species differences in terms of toxicological effects of G. elegans.
Toxic Chinese medicine residues in honey pose a serious threat to consumer health. Gelsemium is one of the nine ancient poisons, making the whole plant virulent. The residue of Gelsemium alkaloid in honey causes poisoning from time to time. Therefore, it is very important to establish a method for the detection of Gelsemium alkaloids in honey. In this study, a method of solid phase extraction (SPE) with two-dimensional liquid chromatography (2D-LC) was developed for the first time for the simultaneous determination of Gelsemium alkaloids in honey, including gelsemine, koumine and humantenmine. First, the honey samples were purified by a PRS cation exchange column and extracted with 5% ammoniated methanol. Then, we verified the methodological indicators, which were in line with the Codex Guideline requirements. The verification results are as follows: matrix-matched calibrations indicated that the correlation coefficients were higher than 0.998. The recovery was in the range of 81%–94.2% with an intraday precision (RSD) of ≤5.0% and interday RSD of ≤3.8%. The limit of detection for the three alkaloids was 2 ng/g. The limits of quantification for gelsemine and koumine were 5 ng/g, and humantenmine was 20 ng/g. This method can be applied to the monitoring of Gelsemium alkaloids in honey.
Gelsemium is a medicinal plant that has been used to treat various diseases, but it is also well-known for its high toxicity. Complex alkaloids are considered the main poisonous components in Gelsemium. However, the toxic mechanism of Gelsemium remains ambiguous. In this work, network pharmacology and experimental verification were combined to systematically explore the specific mechanism of Gelsemium toxicity. The alkaloid compounds and candidate targets of Gelsemium, as well as related targets of excitotoxicity, were collected from public databases. The crucial targets were determined by constructing a protein–protein interaction (PPI) network. Subsequently, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore the bioprocesses and signaling pathways involved in the excitotoxicity corresponding to alkaloids in Gelsemium. Then, the binding affinity between the main poisonous alkaloids and key targets was verified by molecular docking. Finally, animal experiments were conducted to further evaluate the potential mechanisms of Gelsemium toxicity. A total of 85 alkaloids in Gelsemium associated with 214 excitotoxicity-related targets were predicted by network pharmacology. Functional analysis showed that the toxicity of Gelsemium was mainly related to the protein phosphorylation reaction and plasma membrane function. There were also 164 pathways involved in the toxic mechanism, such as the calcium signaling pathway and MAPK signaling pathway. Molecular docking showed that alkaloids have high affinity with core targets, including MAPK3, SRC, MAPK1, NMDAR2B and NMDAR2A. In addition, the difference of binding affinity may be the basis of toxicity differences among different alkaloids. Humantenirine showed significant sex differences, and the LD50 values of female and male mice were 0.071 mg·kg−1 and 0.149 mg·kg−1, respectively. Furthermore, we found that N-methyl-D-aspartic acid (NMDA), a specific NMDA receptor agonist, could significantly increase the survival rate of acute humantenirine-poisoned mice. The results also show that humantenirine could upregulate the phosphorylation level of MAPK3/1 and decrease ATP content and mitochondrial membrane potential in hippocampal tissue, while NMDA could rescue humantenirine-induced excitotoxicity by restoring the function of mitochondria. This study revealed the toxic components and potential toxic mechanism of Gelsemium. These findings provide a theoretical basis for further study of the toxic mechanism of Gelsemium and potential therapeutic strategies for Gelsemium poisoning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.