In this paper, the single event transient (SET) effect in nanotube tunneling field-effect transistor with bias-induced electron-hole bilayer (EHBNT-TFET) is investigated by 3-D TCAD simulation for the first time. The effects of linear energy transfer (LET), characteristic radius, strike angle, electrode bias and hit location on SET response are evaluated in detail. The simulation results show that the peak value of transient drain current is up to 0.08 mA for heavy ion irradiation with characteristic radius of 50 nm and LET of 10 MeV·cm2/mg, which is much higher than ON-state current of EHBNT-TFET. The SET response of EHBNT-TFET presents an obvious dependence on LET, strike angle, drain bias and hit location. As LET increases from 2 MeV·cm2/mg to 10 MeV·cm2/mg, the peak drain current increases monotonically from 0.015 mA to 0.08 mA. The strike angle has an greater impact on peak drain current especially for the smaller characteristic radius. The peak drain current and collected charge increases 0.014 mA and 0.06 fC respectively as drain bias ranges from 0.1 V to 0.9 V. Whether from horizontal or vertical direction, the most sensitive hit location is related to w
t
. The underlying physical mechanism is explored and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.