In order to facilitate the development of product image design, the research proposes the optimized product image design integrated decision system based on Kansei Engineering experiment. The system consists of two sub-models, namely product image design qualitative decision model and quantitative decision model. Firstly, using the product image design qualitative decision model, the influential design elements for the product image are identified based on Quantification Theory Type I. Secondly, the quantitative decision model is utilized to predict the product total image. Grey Relation Analysis (GRA)–Fuzzy logic sub-models of influential design elements are built up separately. After that, utility optimization model is applied to obtain the multi-objective product image. Finally, the product image design integrated decision system is completed to optimize the product image design in the process of product design. A case study of train seat design is given to demonstrate the analysis results. The train seat image design integrated decision system is constructed to determine the product image. This shows the proposed system is effective and for predicting and evaluating the product image. The results provide meaningful improvement for product image design decision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.