In China, environmental pollution due to municipal solid waste (MSW) over-generation is one of the country’s priority concerns. The increasing volume and complexity of the waste poses serious risks to the environment and public health. Currently, the annual growth of MSW generation is estimated to be approximately 8–10% and will increase to 323 million metric tons (Mt) by 2030. Based on the secondary data collected from a literature survey, this article critically evaluates the recent progress of MSW management (MSWM) in China and offers new insights into the waste sector in the era of Industry 4.0. This helps decision makers in China to plan a smooth transition nationwide to a circular economy (CE) in the waste sector. It is evident that digitalization is a driving force for China to move towards low-carbon development strategies within the framework of CE. Through digitalization, the waste sector has promoted prevention, reduction, reuse, and recycling (3Rs) of waste before waste disposal in landfills. A proper implementation of digitalization-based waste recycling has contributed to an efficient cooperation between the government and private sector, increased job opportunities, and promoted the conservation of resources. It is anticipated that this work not only contributes to the establishment of an integrated MSWM system in China, but also improves local MSWM through digitalization in the framework of a CE.
Currently, access to electricity in the cities of the Global South is so limited that electrification remains low in rural areas. Unless properly tackled, one-third of the world’s cities will suffer from energy scarcity. The emergence of microbial fuel cell (MFC) technology accelerates the deployment of decentralized and sustainable energy solutions that can address the looming energy shortage. This review consolidates scattered knowledge into one article about the performance of MFC in optimizing electricity generation from phosphorus (P)-laden wastewater, while removing the target nutrient from wastewater simultaneously. It is obvious from a literature survey of 108 published articles (1999–2022) that the applications of MFC for building a self-powered municipal water treatment system represents an important breakthrough, as this enables water treatment operators to generate electricity without affecting the atmospheric balance of CO2. Using a pyrite-based wetland MFC, about 91% of P was removed after operating 180 days, while generating power output of 48 A/m2. Unlike other techniques, MFCs utilize bacteria that act as micro-reactors and allow substrates to be oxidized completely. The Earth’s tiniest inhabitants can efficiently transform the chemical energy of organic matter in unused wastewater either into hydrogen gas or electricity. This facilitates wastewater treatment plants powering themselves in daily operation or selling electricity on the market. This MFC technology radically changes how to treat wastewater universally. By exploring this direction along the water–energy–food nexus, MFC technology could transform wastewater treatment plants into a key sustainability tool in the energy sector. This suggests that MFCs provide a practical solution that addresses the need of global society for clean water and electricity simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.