BackgroundWith ever increasing amount of available data on biological networks, modeling and understanding the structure of these large networks is an important problem with profound biological implications. Cellular functions and biochemical events are coordinately carried out by groups of proteins interacting each other in biological modules. Identifying of such modules in protein interaction networks is very important for understanding the structure and function of these fundamental cellular networks. Therefore, developing an effective computational method to uncover biological modules should be highly challenging and indispensable.ResultsThe purpose of this study is to introduce a new quantitative measure modularity density into the field of biomolecular networks and develop new algorithms for detecting functional modules in protein-protein interaction (PPI) networks. Specifically, we adopt the simulated annealing (SA) to maximize the modularity density and evaluate its efficiency on simulated networks. In order to address the computational complexity of SA procedure, we devise a spectral method for optimizing the index and apply it to a yeast PPI network.ConclusionsOur analysis of detected modules by the present method suggests that most of these modules have well biological significance in context of protein complexes. Comparison with the MCL and the modularity based methods shows the efficiency of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.