Our recent investigation has shown that the variables of microRNA-1268a may involve in hepatocellular carcinoma (HCC) tumorigenesis. Here, we attempted to identify the prognostic significance of microRNA-1268a expression in tumor tissues by a retrospective analysis in 411 patients with HCC, and analyze its effects on post-operative adjuvant transarterial chemoembolization (TACE) improving HCC prognosis. All cases received tumor resection or tumor resection plus post-operative adjuvant TACE as an initial treatment. Logistical regression analysis exhibited that microRNA-1268a expression was significantly correlated with tumor stage, tumor grade, tumor size, and microvessel density. Cox regression analysis showed that microRNA-1268a expression was an independent prognostic factor for HCC, and TACE treatment had no effects on prognosis of HCC patients with high microRNA-1268a expression. More intriguingly, TACE improved the prognosis of HCC patients with low microRNA-1268a expression. Functionally, overexpression of microRNA-1268a inhibited while its inhibitor enhanced doxorubicin-induced the death of cancer cells. These results suggest that microRNA-1268a may be an independent prognostic factor for HCC patients, and that decreasing microRNA-1268a expression may be beneficial for post-operative adjuvant TACE treatment in HCC.
BackgroundThe serum microRNAs have been reported as potential biomarkers for hepatitis virus-related hepatocellular carcinoma (HCC); however, their role in aflatoxin B1 (AFB1)-related HCC to has not yet been evaluated.Materials and MethodsWe conducted a case-control study, including 366 HCC cases and 662 controls without any evidence of tumors, to identify and assess diagnostic and prognostic potential of serum microRNAs for AFB1-related HCC. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were used to elucidate diagnostic performance, and to compare the microRNAs with α-fetoprotein (AFP) at a cutoff of 20 ng/mL (AFP20) and 400 ng/mL (AFP400).ResultsWe found 8 differentially expressed microRNAs via the microRNA array analysis; however, only microRNA-4651 was further identified to detect AFB1-positive HCC but not AFB1-negative HCC. For AFB1-positive HCC, microRNA-4651 showed higher accuracy and sensitivity than AFP400 (AUC, 0.85 vs. 0.72; Sensitivity, 78.1% vs. 43.0%). Compared to AFP20, microRNA-4651 exhibited higher potential in identifying small-size (0.68 vs. 0.84 for AUC and 36.7% vs. 75.5% for sensitivity, respectively) and early-stage HCC (0.69 vs. 0.84 for AUC and 38.7% vs. 75.7% for sensitivity, respectively). Additionally, miR-4651 was also associated with HCC prognosis (hazard risk value, 2.67 for overall survival and 3.62 for tumor recurrence analysis).ConclusionsThese data suggest that serum microRNA-4651 may be a useful marker for HCC diagnosis and prognosis, especially AFB1-positive cases.
BackgroundOur previous investigations have shown that the variants of X-ray repair complementing 4 (XRCC4) may be involved in hepatocellular carcinoma (hepatocarcinoma) tumorigenesis. This study aimed to investigate the possible prognostic significance of XRCC4 expression for hepatocarcinoma patients and possible value for the selection of transarterial chemoembolization (TACE) treatment.Materials and MethodsWe conducted a hospital-based retrospective analysis (including 421 hepatocarcinoma cases) to analyze the effects of XRCC4 on hepatocarcinoma prognosis and TACE. The levels of XRCC4 expression were tested using immunohistochemistry. The sensitivity of cancer cells to anti-cancer drug doxorubicin was evaluated using the half-maximal inhibitory concentration (IC50).ResultsXRCC4 expression was significantly correlated with pathological features including tumor stage, liver cirrhosis, and micro-vessel density. XRCC4 expression was an independent prognostic factor of hepatocarcinoma, and TACE treatments had no effects on prognosis of hepatocarcinoma patients with high XRCC4 expression. More intriguingly, TACE improved the prognosis of hepatocarcinoma patients with low XRCC4 expression. Functionally, XRCC4 overexpression increased while XRCC4 knockdown reduced the IC50 of cancer cells to doxorubicin.ConclusionsThese results suggest that XRCC4 may be an independent prognostic factor for hepatocarcinoma patients, and that decreasing XRCC4 expression may be beneficial for post-operative adjuvant TACE treatment in hepatocarcinoma.
Hepatocellular carcinoma (hepatocarcinoma) is a major type of primary liver cancer and one of the most frequent human malignant neoplasms. Aflatoxins are I-type chemical carcinogen for hepatocarcinoma. Increasing evidence has shown that hepatocarcinoma induced by aflatoxins is the result of interaction between aflatoxins and hereditary factor. Aflatoxins can induce DNA damage including DNA strand break, adducts formation, oxidative DNA damage, and gene mutation and determine which susceptible individuals feature cancer. Inheritance such as alterations may result in the activation of protooncogenes and the inactivation of tumor suppressor genes and determine individual susceptibility to cancer. Interaction between aflatoxins and genetic susceptible factors commonly involve in almost all pathologic sequence of hepatocarcinoma: chronic liver injury, cirrhosis, atypical hyperplastic nodules, and hepatocarcinoma of early stages. In this review, we discuss the biogenesis, toxification, and epidemiology of aflatoxins and signal pathways of aflatoxin-induced hepatocarcinoma. We also discuss the roles of some important genes related to cell apoptosis, DNA repair, drug metabolism, and tumor metastasis in hepatocarcinogenesis related to aflatoxins.
Our previous reports have shown that the genetic single-nucleotide polymorphisms (GSNPs) in the DNA repair gene X-ray repair cross complementing 4 (XRCC4) are involved in the carcinogenesis of hepatocellular carcinoma (HCC) induced by aflatoxin B1 (AFB1). However, the effects of GSNPs in the coding regions of XRCC4 on hepatic toxicity of AFB1 have been less investigated. We conducted a hospital-based clinic tissue samples with pathologically diagnosed HCC (n = 380) in a high AFB1 exposure area to explore the possible roles of GSNPs in the coding regions of XRCC4 in AFB1-induced HCC using liver toxicity assays. A total of 143 GSNPs were included in the present study and genotyped using the SNaPshot method, whereas the liver toxicity of AFB1 was evaluated using AFB1-DNA adducts in the tissues with HCC. In the clinicopathological samples with HCC, the average adduct amount is 2.27 AE 1.09 μmol/mol DNA. Among 143 GSNPs of XRCC4, only rs1237462915, rs28383151, rs762419679, rs766287987, and rs3734091 significantly increased the levels of AFB1-DNA adducts. Furthermore, XRCC4 GSNPs (including rs28383151, rs766287987, and rs3734091) also increased cumulative hazard for patients with HCC. These results suggest that the liver toxicity of AFB1 may be modified by XRCC4 GSNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.