In this paper, we present a preconditioned normal and skew-Hermitian splitting (PNSS) iteration method for continuous Sylvester equations AX + XB = C with positive definite/semi-definite matrices. Theoretical analysis shows that the PNSS methods will converge unconditionally to the exact solution of the continuous Sylvester equations. An inexact variant of the PNSS iteration method(IPNSS) and the analysis of its convergence property in detail have been established. Numerical experiments further show that this new method is more efficient and robust than the existing ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.