These findings suggest that CXCL1 plays a critical role in tumor growth and may serve as a potential molecular target for use in HCC therapy.
The purpose of this study was to screen for changes in chemokine and chemokine‐related genes that are expressed in hepatocellular carcinoma (HCC) as potential markers of HCC progression. Total RNA was extracted from tumor and peritumor tissues from mice with HCC and analyzed using a PCR microarray comprising 98 genes. Changes in gene expression of threefold or more were screened and subsequently confirmed by immunohistochemical analyses and western blotting. Furthermore, whether chemokine knockdown by RNA interference (RNAi) could significantly suppress tumor growth in vivo was also evaluated. Finally, total serum samples were collected from HCC patients with HBV/cirrhosis (n = 16) or liver cirrhosis (n = 16) and from healthy controls (n = 16). The serum mRNA and protein expression levels of CXCL1 in primary liver cancer patients were detected by qRT‐PCR and western blot analysis, respectively. Several genes were up‐regulated in tumor tissues during the progression period, including CXCL1, CXCL2, CXCL3, and IL‐1β, while CXCR1 expression was down‐regulated. CBRH‐7919 cells carrying CXCL1 siRNA resulted in decreased tumor growth in nude mice. The differences in serum CXCL1 mRNA and protein levels among the HCC, hepatic sclerosis (HS), and control groups were significant (P < 0.001). The mRNA and protein levels of CXCL1 in the HCC group were up‐regulated compared with the HS group or the control group (P < 0.001). Several chemokine genes were identified that might play important roles in the tumor microenvironment of HCC. These results provide new insights into human HCC and may ultimately facilitate early HCC diagnosis and lead to the discovery of innovative therapeutic approaches for HCC.
Hepatocellular carcinoma (HCC) is an aggressive malignancy and a major cause of cancer-related mortality worldwide. Our previous study shows that chemokine (C-X-C motif) ligand 1 (CXCL1) was upregulated and CXCR1 was downregulated in tumor tissues as compared to peritumor tissues by chemotaxis assay. As the status of CXCL subgroups and their receptors affect progression of HCC, we evaluated potential mechanisms of CXCL1 associated with anticancer effects in HCC based on our previous study. The effects of targeting CXCL1 by RNA interference (RNAi) on the proliferation and apoptosis of CBRH-7919 cells were observed in vitro and in vivo. Additionally, whether CXCL1 knockdown significantly reduce the activity of STAT3, NF-κB and HIF-1 or not were also estimated. RNAi of CXCL1 in the CBRH-7919 cells decreased the growth of tumors in nude mice by inhibited cells proliferation and induced apoptosis. In conclusion, these findings suggest that CXCL1 plays critical roles in the growth and apoptosis of HCC. RNAi of CXCL1 inhibits the growth and apoptosis of tumor cells, which indicates that CXCL1 may be a potential molecular target for use in HCC therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.