Water erosion on hillslopes is a worldwide environmental problem, which is a rainfall‐induced process, especially extreme rainfall. The great intensity of extreme rainfall strongly enhances the power of overland flow to detach soil and transport sediment. Plant litter is one of the most important constituents of ecosystems that often covers the soil surface and can be incorporated into topsoil. However, little attention has been paid to its effect on flow hydraulics owing to the veiled nature. This study aimed to examine the effects of incorporated litter on the hydraulic properties under extreme rainfall condition. To reach this goal, six litter rates of 0, 0.05, 0.10, 0.20, 0.35, and 0.50 kg m−2 and four litter types collected from deciduous trees, coniferous trees, shrubs, and herbs were incorporated into topsoil. Then, simulated rainfall experiments were performed on five slope gradients (5°, 10°, 15°, 20°, and 25°) with an extreme rainfall intensity of 80 mm h−1. The results showed that Froude number and flow velocity of the overland flow decreased, whereas flow resistance increased exponentially with litter incorporation rate. Litter type had an influence on flow hydraulics, which can mainly be attributed to the variations in surface coverage of the exposed litter and the litter morphology. Flow velocity and Darcy–Weisbach coefficient increased markedly with slope gradient. However, the variation of slope gradient did not modify the relationships between flow hydraulics and incorporated litter rate. The random roughness, resulting from heterogeneous erosion due to the uneven protection of surface exposed litter, increased linearly with litter incorporated rate. As rainfall proceeded, flow hydraulics varied with incorporated litter rate and slope gradient complicatedly due to the increases in flow rate and coverage of the exposed litter and the modification of soil surface roughness.
Air-breathing marine predators have been essential components of the marine ecosystem since the Triassic. Many of them are considered the apex predators but without direct evidence-dietary inferences are usually based on circumstantial evidence, such as tooth shape. Here we report a fossil that likely represents the oldest evidence for predation on megafauna, i.e., animals equal to or larger than humans, by marine tetrapods-a thalattosaur (4 m in total length) in the stomach of a Middle Triassic ichthyosaur (5 m). The predator has grasping teeth yet swallowed the body trunk of the prey in one to several pieces. There were many more Mesozoic marine reptiles with similar grasping teeth, so megafaunal predation was likely more widespread than presently conceived. Megafaunal predation probably started nearly simultaneously in multiple lineages of marine reptiles in the Illyrian (about 242-243 million years ago).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.