Phototherapy shows some unique advantages in clinical application, such as remote controllability, improved selectivity, and low bio-toxicity, than chemotherapy. In order to improve the safety and therapeutic efficacy, imaging-guided therapy seems particularly important because it integrates visible information to speculate the distribution and metabolism of the probe. Here we prepare biocompatible core-shell nanocomposites for dual-modality imaging-guided photothermal and photodynamic dual-therapy by the in situ growth of porphyrin-metal organic framework (PMOF) on Fe3O4@C core. Fe3O4@C core was used as T2-weighted magnetic resonance (MR) imaging and photothermal therapy (PTT) agent. The optical properties of porphyrin were well remained in PMOF, and PMOF was therefore selected for photodynamic therapy (PDT) and fluorescence imaging. Fluorescence and MR dual-modality imaging-guided PTT and PDT dual-therapy was confirmed with tumour-bearing mice as model. The high tumour accumulation of Fe3O4@C@PMOF and controllable light excitation at the tumour site achieved efficient cancer therapy, but low toxicity was observed to the normal tissues. The results demonstrated that Fe3O4@C@PMOF was a promising dual-imaging guided PTT and PDT dual-therapy platform for tumour diagnosis and treatment with low cytotoxicity and negligible in vivo toxicity.
A structurally nanoengineered antimicrobial polypeptide consisting of lysine and valine residues is a new class of antimicrobial agent with superior antibacterial activity against multidrug-resistant bacteria and low toxicity toward mammalian cells. Utilizing coarse-grained models, we studied the interactions of microbial cytoplasmic membranes with polypeptides of either (K 2 V 1 ) 5 (star-KV) or CM15 (star-CM15). Our computational results verify the low toxicity of polypeptides of (K 2 V 1 ) 5 toward the dipalmitoyl phosphatidylcholine bilayer. This low toxicity is demonstrated to originate from weakened hydrophobicity combined with its random coil conformation for (K 2 V 1 ) 5 because of the highly abundant valine residues, compared with the typical antimicrobial peptides, such as CM15. In the interactions with a palmitoyl-oleoyl-phosphatidylethanolamine/palmitoyl-oleoyl-phosphatidylglycerol bilayer, star-KV has greater ability in phase separation and generation of phase boundary defects not only in lipid redistribution but also in lateral dynamic movements, although both star-KV and star-CM15 can extract the phosphatidylglycerol lipids and purify the phosphatidylethanolamine lipids into continuum domains. We suggest that the polypeptide of (K 2 V 1 ) 5 can nondisruptively kill bacteria by hampering bacterial metabolism through reorganizing lipid domain distribution and simultaneously "freezing" lipid movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.