Introduction: The objective of this review is to systematically summarize the consensus on best practices for different NP conditions of the two most commonly utilized noninvasive brain stimulation (NIBS) technologies, repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS). Methods: PubMed was searched according to the predetermined keywords and criteria. Only English language studies and studies published up to January 31, 2020 were taken into consideration. Meta-analyses, reviews, and systematic reviews were excluded first, and those related to animal studies or involving healthy volunteers were also excluded. Finally, 29 studies covering 826 NP patients were reviewed. Results: The results from the 24 enrolled studies and 736 NP patients indicate that rTMS successfully relieved the pain symptoms of 715 (97.1%) NP patients. Also, five studies involving 95 NP patients (81.4%) also showed that tDCS successfully relieved NP. In the included studied, the M1 region plays a key role in the analgesic treatment of NIBS. The motor evoked potentials (MEPs), the 10-20 electroencephalography system (EEG 10/20 system), and neuro-navigation methods are used in clinical practice to locate therapeutic targets. Based on the results of the review, the stimulation parameters of rTMS that best induce an analgesic effect are a stimulation frequency of 10-20 Hz, a stimulation intensity of 80-120% of RMT, 1000-2000 pulses, and 5-10 sessions, and the most effective parameters of tDCS are a current intensity of 2 mA, a session duration of 20-30 min, and 5-10 sessions. Conclusions: Our systematically reviewed the evidence for positive and negative responses to rTMS and tDCS for NP patient care and underscores the analgesic efficacy of NIBS in patients with NP. The treatment of NP should allow the design of optimal treatments for individual patients.
Mitochondria play an essential role in pathophysiology of both inflammatory and neuropathic pain (NP), but the mechanisms are not yet clear. Dynamin-related protein 1 (Drp1) is broadly expressed in the central nervous system and plays a role in the induction of mitochondrial fission process. Spared nerve injury (SNI), due to the dysfunction of the neurons within the spinal dorsal horn (SDH), is the most common NP model. We explored the neuroprotective role of Drp1 within SDH in SNI. SNI mice showed pain behavior and anxiety-like behavior, which was associated with elevation of Drp1, as well as increased density of mitochondria in SDH. Ultrastructural analysis showed SNI induced damaged mitochondria into smaller perimeter and area, tending to be circular. Characteristics of vacuole in the mitochondria further showed SNI induced the increased number of vacuole, widened vac-perimeter and vac-area. Stable overexpression of Drp1 via AAV under the control of the Drp1 promoter by intraspinal injection (Drp1 OE) attenuated abnormal gait and alleviated pain hypersensitivity of SNI mice. Mitochondrial ultrastructure analysis showed that the increased density of mitochondria induced by SNI was recovered by Drp1 OE which, however, did not change mitochondrial morphology and vacuole parameters within SDH. Contrary to Drp1 OE, down-regulation of Drp1 in the SDH by AAV-Drp1 shRNA (Drp1 RNAi) did not alter painful behavior induced by SNI. Ultrastructural analysis showed the treatment by combination of SNI and Drp1 RNAi (SNI + Drp1 RNAi) amplified the damages of mitochondria with the decreased distribution density, increased perimeter and area, as well as larger circularity tending to be more circular. Vacuole data showed SNI + Drp1 RNAi increased vacuole density, perimeter and area within the SDH mitochondria. Our results illustrate that mitochondria within the SDH are sensitive to NP, and targeted mitochondrial Drp1 overexpression attenuates pain hypersensitivity. Drp1 offers a novel therapeutic target for pain treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.