Sorafenib is the first-line chemotherapeutic therapy for advanced hepatocellular carcinoma (HCC). However, sorafenib resistance significantly limits its therapeutic efficacy, and the mechanisms underlying resistance have not been fully clarified. Here we report that a circular RNA, circRNA-SORE (a circular RNA upregulated in sorafenib-resistant HCC cells), plays a significant role in sorafenib resistance in HCC. We found that circRNA-SORE is upregulated in sorafenib-resistant HCC cells and depletion of circRNA-SORE substantially increases the cell-killing ability of sorafenib. Further studies revealed that circRNA-SORE binds the master oncogenic protein YBX1 in the cytoplasm, which prevents YBX1 nuclear interaction with the E3 ubiquitin ligase PRP19 and thus blocks PRP19-mediated YBX1 degradation. Moreover, our in vitro and in vivo results suggest that circRNA-SORE is transported by exosomes to spread sorafenib resistance among HCC cells. Using different HCC mouse models, we demonstrated that silencing circRNA-SORE by injection of siRNA could substantially overcome sorafenib resistance. Our study provides a proof-of-concept demonstration for a potential strategy to overcome sorafenib resistance in HCC patients by targeting circRNA-SORE or YBX1.
NEK2 has been estimated to play an important role in cancer progression. However, its relevance in hepatocellular carcinoma (HCC) has not yet been explored. Immunohistochemistry revealed NEK2 expression was upregulated in HCC. NEK2-positive hepatocellular carcinoma patients were associated with poor prognosis after surgery compared with NEK2-negative patients based on Kaplan-Meier curves. Deletion of NEK2 reduced self-renewal properties and chemotherapeutic resistance, and decreased the stemness associated genes in cell lines. NEK2 was associated with unfavorable outcomes in HCC patients, and was revealed to regulate self-renewal property by means of Wnt/β-catenin signaling, and chemotherapeutic resistance by preferential regulation of the expression of ABCG2 and ALDH1A1 in HCC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.