There is always a temperature difference of more than 10 degrees between the human body, as a sustainable heat source, and the ambient temperature. Converting body heat into electricity that in turn is used to drive personal medical electronics is of significance in smart wearable medicine. To avoid the frangibility and complex preparation of traditional thermoelectric materials, we fabricated a gel electrolyte-based thermogalvanic generator with Fe 3+ /Fe 2+ as a redox pair, which presents not only moderate thermoelectric performance but also excellent flexibility. With a micropore-widespread polyvinylidene fluoride diaphragm implanted in the gel, a thermal barrier was created between the two halves, effectively improving the Seebeck coefficient by reducing its thermal conductivity. Considering the superior temperature response of the gel, a self-powered body temperature monitoring system was established by conformally affixing it to the forehead. Meanwhile, the gel patch with a high specific heat capacity can effectively cool down fever patients. This work may offer a new train of thought for exploiting self-powered wearable medical electronics by scavenging low-grade body heat.
As a low-grade sustainable heat source, the breath waste heat exhaled by human bodies is always ignored, although producing a greater temperature than ambient. Converting this heat into electric energy for use as power sources or detecting signals is extremely important in cutting-edge wearable medicine. This heatto-electricity conversion is possible with thermogalvanic hydrogels. However, challenges remain in their antifreezing and antidrying properties, significantly restricting the durability of thermogalvanic gels in practical applications. Herein, a dual-network poly(vinyl alcohol)/gelatin (PVA/GEL) gel thermogalvanic device with Fe(CN) 63−/4− as a redox pair is developed, with an outstanding low-temperature durability and antidrying capacity. These features result from the use of a binary H 2 O/ GL (glycerin) solvent to limit hydrogen bonding between water molecules. The prepared thermogalvanic gel patch is capable of easily converting physiological data into understandable electrical impulses using the temperature difference between the ambient environment and the heat produced by human breathing, realizing a simple self-powered respiratory monitoring strategy for the first time. Even below zero temperature, the gel patch-based mask can operate normally, implying it fits into low-temperature environments. This study sheds fresh light on the development of active wearable medical electronics that are powered by demic low-level heat.
Thermogalvanic hydrogels have been highlighted in the design of flexible thermoelectric cells and sensors on account of their excellent physicochemical properties such as high thermal sensitivity, stretchability, and portability. However,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.