Objective To identify key genes involved in occurrence and development of polycystic ovary syndrome (PCOS). Methods By downloading the GSE85932 dataset from the GEO database, we used bioinformatical analysis to analyse differentially expressed genes (DEGs) from blood samples of eight women with PCOS and eight matched controls. Following bioinformatic analysis, we performed a cross-sectional study of serum samples taken from 79 women with PCOS and 36 healthy controls. Results From the 178 DEGs identified by bioinformatical analysis, 15 genes were identified as significant, and of these, ORM1 and ORM2 were selected for further verification as potential biomarkers for PCOS. Serum ORM1 and ORM2 levels were significantly increased in women with PCOS, and had a high diagnostic value. ORM1 and ORM2 were positively correlated with testosterone, cholesterol, and triglycerides. ORM1 levels were negatively correlated with high density lipoprotein (HDL) while ORM2 levels showed no significant correlation. Conclusions ORM may be an effective biomarker for the diagnosis of PCOS and its monitoring may be a useful therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.