Super-enhancers are important for controlling and defining the expression of cell-specific genes. With research on human disease and biological processes, human H3K27ac ChIP-seq datasets are accumulating rapidly, creating the urgent need to collect and process these data comprehensively and efficiently. More importantly, many studies showed that super-enhancer-associated single nucleotide polymorphisms (SNPs) and transcription factors (TFs) strongly influence human disease and biological processes. Here, we developed a comprehensive human super-enhancer database (SEdb, http://www.licpathway.net/sedb) that aimed to provide a large number of available resources on human super-enhancers. The database was annotated with potential functions of super-enhancers in the gene regulation. The current version of SEdb documented a total of 331 601 super-enhancers from 542 samples. Especially, unlike existing super-enhancer databases, we manually curated and classified 410 available H3K27ac samples from >2000 ChIP-seq samples from NCBI GEO/SRA. Furthermore, SEdb provides detailed genetic and epigenetic annotation information on super-enhancers. Information includes common SNPs, motif changes, expression quantitative trait locus (eQTL), risk SNPs, transcription factor binding sites (TFBSs), CRISPR/Cas9 target sites and Dnase I hypersensitivity sites (DHSs) for in-depth analyses of super-enhancers. SEdb will help elucidate super-enhancer-related functions and find potential biological effects.
Enhancers are a class of cis-regulatory elements that can increase gene transcription by forming loops in intergenic regions, introns and exons. Enhancers, as well as their associated target genes, and transcription factors (TFs) that bind to them, are highly associated with human disease and biological processes. Although some enhancer databases have been published, most only focus on enhancers identified by high-throughput experimental techniques. Therefore, it is highly desirable to construct a comprehensive resource of manually curated enhancers and their related information based on low-throughput experimental evidences. Here, we established a comprehensive manually-curated enhancer database for human and mouse, which provides a resource for experimentally supported enhancers, and to annotate the detailed information of enhancers. The current release of ENdb documents 737 experimentally validated enhancers and their related information, including 384 target genes, 263 TFs, 110 diseases and 153 functions in human and mouse. Moreover, the enhancer-related information was supported by experimental evidences, such as RNAi, in vitro knockdown, western blotting, qRT-PCR, luciferase reporter assay, chromatin conformation capture (3C) and chromosome conformation capture-on-chip (4C) assays. ENdb provides a user-friendly interface to query, browse and visualize the detailed information of enhancers. The database is available at http://www.licpathway.net/ENdb.
Accessible chromatin is a highly informative structural feature for identifying regulatory elements, which provides a large amount of information about transcriptional activity and gene regulatory mechanisms. Human ATAC-seq datasets are accumulating rapidly, prompting an urgent need to comprehensively collect and effectively process these data. We developed a comprehensive human chromatin accessibility database (ATACdb, http://www.licpathway.net/ATACdb), with the aim of providing a large amount of publicly available resources on human chromatin accessibility data, and to annotate and illustrate potential roles in a tissue/cell type-specific manner. The current version of ATACdb documented a total of 52 078 883 regions from over 1400 ATAC-seq samples. These samples have been manually curated from over 2200 chromatin accessibility samples from NCBI GEO/SRA. To make these datasets more accessible to the research community, ATACdb provides a quality assurance process including four quality control (QC) metrics. ATACdb provides detailed (epi)genetic annotations in chromatin accessibility regions, including super-enhancers, typical enhancers, transcription factors (TFs), common single-nucleotide polymorphisms (SNPs), risk SNPs, eQTLs, LD SNPs, methylations, chromatin interactions and TADs. Especially, ATACdb provides accurate inference of TF footprints within chromatin accessibility regions. ATACdb is a powerful platform that provides the most comprehensive accessible chromatin data, QC, TF footprint and various other annotations.
Super-enhancers (SEs) have prominent roles in biological and pathological processes through their unique transcriptional regulatory capability. To date, several SE databases have been developed by us and others. However, these existing databases do not provide downstream or upstream regulatory analyses of SEs. Pathways, transcription factors (TFs), SEs, and SE-associated genes form complex regulatory networks. Therefore, we designed a novel web server, SEanalysis, which provides comprehensive SE-associated regulatory network analyses. SEanalysis characterizes SE-associated genes, TFs binding to target SEs, and their upstream pathways. The current version of SEanalysis contains more than 330 000 SEs from more than 540 types of cells/tissues, 5042 TF ChIP-seq data generated from these cells/tissues, DNA-binding sequence motifs for ∼700 human TFs and 2880 pathways from 10 databases. SEanalysis supports searching by either SEs, samples, TFs, pathways or genes. The complex regulatory networks formed by these factors can be interactively visualized. In addition, we developed a customizable genome browser containing >6000 customizable tracks for visualization. The server is freely available at http://licpathway.net/SEanalysis.
Precise cancer classification is a central challenge in clinical cancer research such as diagnosis, prognosis and metastasis prediction. Most existing cancer classification methods based on gene or metabolite biomarkers were limited to single genomics or metabolomics, and lacked integration and utilization of multiple ‘omics’ data. The accuracy and robustness of these methods when applied to independent cohorts of patients must be improved. In this study, we propose a directed random walk-based method to evaluate the topological importance of each gene in a reconstructed gene–metabolite graph by integrating information from matched gene expression profiles and metabolomic profiles. The joint use of gene and metabolite information contributes to accurate evaluation of the topological importance of genes and reproducible pathway activities. We constructed classifiers using reproducible pathway activities for precise cancer classification and risk metabolic pathway identification. We applied the proposed method to the classification of prostate cancer. Within-dataset experiments and cross-dataset experiments on three independent datasets demonstrated that the proposed method achieved a more accurate and robust overall performance compared to several existing classification methods. The resulting risk pathways and topologically important differential genes and metabolites provide biologically informative models for prostate cancer prognosis and therapeutic strategies development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.