Mesenchymal stem cells reportedly have a marked effect on tumor growth or suppression. However, it remains uncertain whether adipose-derived mesenchymal stem cells (ADSCs) from grafted fat can contribute to breast cancer growth and recurrence. In the present study, interactions between ADSCs and MCF-7 breast cancer cells were evaluated in a Matrigel co-culture system and in an in vivo nude mouse model. Results suggested that MCF-7 cells exerted tumor tropism effects on ADSCs and this may be regulated by chemokines, such as the macrophage inflammatory protein (MIP)-1δ and MIP-3α. Additionally, ADSCs significantly induced tumorsphere formation in vitro and promoted tumorigenicity in vivo. RT-qPCR analysis indicated that tumorsphere formation by MCF-7 cells was associated with the induction of stem-like properties, which was mediated by epithelial-mesenchymal transition. Together, the present findings indicated that ADSCs exhibit tropism and induce tumorsphere formation of MCF-7 cells.
Decellularized adipose tissue (DAT) represents a promising scaffold for adipose tissue engineering. However, the unique and prolonged lipid removal process required for adipose tissue can damage extracellular matrix (ECM) constituents. Moreover, inadequate vascularization limits the recellularization of DAT in vivo. We proposed a neo-mechanical protocol for rapidly breaking adipocytes and removing lipid content from adipose tissue. The lipid-depleted adipose tissue was then subjected to a fast and mild decellularization to fabricate high-quality DAT (M-DAT). Adipose liquid extract (ALE) derived from this mechanical process was collected and incorporated into M-DAT to further optimize in vivo recellularization. Ordinary DAT was fabricated and served as a control. This developed strategy was evaluated based on decellularization efficiency, ECM quality, and recellularization efficiency. Angiogenic factor components and angiogenic potential of ALE were evaluated in vivo and in vitro. M-DAT achieved the same decellularization efficiency, but exhibited better retention of ECM components and recellularization, compared with those with ordinary DAT. Protein quantification revealed considerable levels of angiogenic factors (basic fibroblast growth factor, epidermal growth factor, transforming growth factor-β1, and vascular endothelial growth factor) in ALE. ALE promoted tube formation in vitro and induced intense angiogenesis in M-DAT in vivo; furthermore, higher expression of the adipogenic factor PPARγ and greater numbers of adipocytes were evident following ALE treatment, compared with those in the M-DAT group. Mechanical processing of adipose tissue led to the production of high-quality M-DAT and angiogenic factor-enriched ALE. The combination of ALE and M-DAT could be a promising strategy for engineered adipose tissue construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.