Multi-person pose estimation is a challenging problem. Existing methods are mostly two-stage based-one stage for proposal generation and the other for allocating poses to corresponding persons. However, such two-stage methods generally suffer low efficiency. In this work, we present the first single-stage model, Single-stage multi-person Pose Machine (SPM), to simplify the pipeline and lift the efficiency for multi-person pose estimation. To achieve this, we propose a novel Structured Pose Representation (SPR) that unifies person instance and body joint position representations. Based on SPR, we develop the SPM model that can directly predict structured poses for multiple persons in a single stage, and thus offer a more compact pipeline and attractive efficiency advantage over two-stage methods. In particular, SPR introduces the root joints to indicate different person instances and human body joint positions are encoded into their displacements w.r.t. the roots. To better predict long-range displacements for some joints, SPR is further extended to hierarchical representations. Based on SPR, SPM can efficiently perform multi-person poses estimation by simultaneously predicting root joints (location of instances) and body joint displacements via CNNs. Moreover, to demonstrate the generality of SPM, we also apply it to multi-person 3D pose estimation. Comprehensive experiments on benchmarks MPII, extended PASCAL-Person-Part, MSCOCO and CMU Panoptic clearly demonstrate the state-of-the-art efficiency of SPM for multi-person 2D/3D pose estimation, together with outstanding accuracy.
Existing video-based human pose estimation methods extensively apply large networks onto every frame in the video to localize body joints, which suffer high computational cost and hardly meet the low-latency requirement in realistic applications. To address this issue, we propose a novel Dynamic Kernel Distillation (DKD) model to facilitate small networks for estimating human poses in videos, thus significantly lifting the efficiency. In particular, DKD introduces a light-weight distillator to online distill pose kernels via leveraging temporal cues from the previous frame in a one-shot feed-forward manner. Then, DKD simplifies body joint localization into a matching procedure between the pose kernels and the current frame, which can be efficiently computed via simple convolution. In this way, DKD fast transfers pose knowledge from one frame to provide compact guidance for body joint localization in the following frame, which enables utilization of small networks in video-based pose estimation. To facilitate the training process, DKD exploits a temporally adversarial training strategy that introduces a temporal discriminator to help generate temporally coherent pose kernels and pose estimation results within a long range. Experiments on Penn Action and Sub-JHMDB benchmarks demonstrate outperforming efficiency of DKD, specifically, 10× flops reduction and 2× speedup over previous best model, and its state-of-the-art accuracy. * This work was partly done while Xuecheng was an intern as Snap Inc. Small CNN Pose Kernel Distillator Matching Frame t-1 Frame t Small CNN Matching Frame t+1 Small CNN Pose Kernel Distillator Matching (a) Our DKD Model RNN or Optical Flow Large CNN Classification Frame t-1 RNN or Optical Flow Large CNN Frame t Large CNN Frame t+1 Classification Classification (b) The Traditional Model
This paper proposes a new Generative Partition Network (GPN) to address the challenging multi-person pose estimation problem. Different from existing models that are either completely top-down or bottom-up, the proposed GPN introduces a novel strategy-it generates partitions for multiple persons from their global joint candidates and infers instance-specific joint configurations simultaneously. The GPN is favorably featured by low complexity and high accuracy of joint detection and re-organization. In particular, GPN designs a generative model that performs one feed-forward pass to efficiently generate robust person detections with joint partitions, relying on dense regressions from global joint candidates in an embedding space parameterized by centroids of persons. In addition, GPN formulates the inference procedure for joint configurations of human poses as a graph partition problem, and conducts local optimization for each person detection with reliable global affinity cues, leading to complexity reduction and performance improvement. GPN is implemented with the Hourglass architecture as the backbone network to simultaneously learn joint detector and dense regressor. Extensive experiments on benchmarks MPII Human Pose Multi-Person, extended PASCAL-Person-Part, and WAF, show the efficiency of GPN with new state-of-the-art performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.