us warm in cold climates and shielded us from the nakedness for modesty and civilization. [1,2] Cloth is also a platform for artists, designers, and tailors to advance the clothing demands with emerging materials, process, and fashion. [2] While the majority of the functionalities of clothes lie in their physical attributes, such as their softness, breathability, air/ vapor permeability, and, of course the appearance, their role in thermal management is equally, if not more, important. The primary goal of clothing is to satisfy human being's basic needs in thermal comfort, by providing cooling in the hot environment or heating in the cold environment. [1] The energy management aspect of clothing is becoming an increasingly important and attractive aspect due to our increasing awareness to energy consumption and our persisting pursuit of comfort and health. The finite availability and the associated environmental consequence of fossil fuels have motivated us to save energy from virtually all aspects of our daily lives. A suitable thermal envelop is a necessity for our living and working. To create a comfortable indoor environment, the building heating, ventilation, and air conditioning (HVAC) systems are widely used for space cooling and heating at the expense of excessive energy consumption. [3][4][5][6] According to United States In this decade, the demands of energy saving and diverse personal thermoregulation requirements along with the emergence of wearable electronics and smart textiles give rise to the resurgence of personal thermal management (PTM) technologies. PTM, including personal cooling, heating, insulation, and thermoregulation, are far more flexible and extensive than the traditional air/liquid cooling garments for the human body. Concomitantly, many new advanced materials and strategies have emerged in this decade, promoting the thermoregulation performance and the wearing comfort of PTM simultaneously. In this review, an overview is presented of the state-ofthe-art and the prospects in this burgeoning field. The emerging materials and strategies of PTM are introduced, and classed by their thermal functions. The concept of infrared-transparent visible-opaque fabric (ITVOF) is first highlighted, as it triggers the work on advanced PTM by combining it with radiative cooling, and the corresponding implementations and realizations are subsequently introduced, followed by wearable heaters, flexible thermoelectric devices, and sweat-management Janus textiles. Finally, critical considerations on the challenges and opportunities of PTM are presented and future directions are identified, including thermally conductive polymers and fibers, physiological/psychological statistical analysis, and smart PTM strategies.
Thermal camouflage, which is used to conceal objects in the infrared vision for confrontation with infrared detection in civilian or military applications, has garnered increasing attraction and interest recently. Compared with conductive thermal camouflage, that is to tune heat conduction to achieve equivalent temperature fields, radiative thermal camouflage, based on emissivity engineering, is more promising and shows much superiority in the pursuit of dynamic camouflage technology when resorting to stimuli-responsive materials. In this paper, we demonstrate the emissivity-engineered radiative metasurface to realize dynamic thermal camouflage functionality via a flying laser heat source on the metal-liquid-crystal-metal (MLCM) platform. We employ a rigorous coupled-wave algorithm to calculate the surface emissivity of Au/LC/Au microstructures, where the LC-orientation angle distribution is quantified by minimizing the emitted thermal energy standard deviation throughout the whole plate. Emissivity engineering on the MCLM platform is attributed to multiple magnetic polariton resonance, and agrees well with the equivalent electric circuit analysis. Through this electrical modulation strategy, the moving hot spot in the original temperature field is erased and a uniform temperature field is observed in the infrared camera instead, demonstrating the very good dynamic thermal camouflage functionality. The present MLCM-based radiative metasurface may open avenues for high-resolution emissivity engineering to realize novel thermal functionality and develop new applications for thermal metamaterials and meta-devices.
Thermal metamaterials have exhibited great potential on manipulating, controlling and processing the flow of heat, and enabled many promising thermal metadevices, including thermal concentrator, rotator, cloak, etc. However, three long-standing challenges remain formidable, i.e., transformation optics-induced anisotropic material parameters, the limited shape adaptability of experimental thermal metadevices, and a priori knowledge of background temperatures and thermal functionalities. Here, we present robustly printable freeform thermal metamaterials to address these long-standing difficulties. This recipe, taking the local thermal conductivity tensors as the input, resorts to topology optimization for the freeform designs of topological functional cells (TFCs), and then directly assembles and prints them. Three freeform thermal metadevices (concentrator, rotator, and cloak) are specifically designed and 3D-printed, and their omnidirectional concentrating, rotating, and cloaking functionalities are demonstrated both numerically and experimentally. Our study paves a powerful and flexible design paradigm toward advanced thermal metamaterials with complex shapes, omnidirectional functionality, background temperature independence, and fast-prototyping capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.