Dopaminergic (DAergic) neuronal activity in the ventral tegmental area (VTA) is thought to contribute generally to pleasure, reward, and drug reinforcement and has been implicated in nicotine dependence. nAChRs expressed in the VTA exhibit diverse subunit compositions, but the functional and pharmacological properties are largely unknown. Here, using patch-clamp recordings in single DAergic neurons freshly dissociated from rat VTA, we clarified three functional subtypes of nAChRs (termed ID, IID and IIID receptors) based on whole-cell current kinetics and pharmacology. Kinetic analysis demonstrated that comparing to ID, IID receptor-mediated current had faster activation and decay constant and IIID receptor-mediated current had larger current density. Pharmacologically, ID receptor-mediated current was sensitive to the α4β2-nAChR agonist RJR-2403 and antagonist dihydro-β-erythroidine (DHβE); IID receptor-mediated current was sensitive to the selective α7-nAChR agonist choline and antagonist methyllycaconitine (MLA); while IIID receptor-mediated current was sensitive to the β4-containing nAChR agonist cytisine and antagonist mecamylamine (MEC). The agonist concentration-response relationships demonstrated that IID receptor-mediated current exhibited the highest EC 50 value compared to ID and IIID receptors, suggesting a relatively low agonist affinity of type IID receptors. These results suggest that the type ID, IID and IIID nAChR-mediated currents are predominately mediated by activation of α4β2-nAChR, α7-nAChR and a novel nAChR subtype(s), respectively. Collectively, these findings indicate that the VTA DAergic neurons express diversity and multiplicity of functional nAChR subtypes. Interestingly, each DAergic neuron predominantly expresses only one particularly functional nAChR subtype, which may have distinct but important roles in regulation of VTA DA neuronal function, DA transmission and nicotine dependence.
Aims: The manner in which hydrogen sulfide (H 2 S) suppresses neuroinflammation is poorly understood. We investigated whether H 2 S polarized microglia to an anti-inflammatory (M2) phenotype by activating AMPactivated protein kinase (AMPK). Results: Three structurally unrelated H 2 S donors (5-(4-hydroxyphenyl)-3H-1,2-dithiocyclopentene-3-thione [ADT-OH], (p-methoxyphenyl) morpholino-phosphinodithioic acid [GYY4137], and sodium hydrosulfide [NaHS]) enhanced AMPK activation in BV2 microglial cells in the presence and absence of lipopolysaccharide (LPS). The overexpression of the H 2 S synthase cystathionine bsynthase (CBS) in BV2 cells enhanced endogenous H 2 S production and AMPK activation regardless of LPS stimulation. On LPS stimulation, overexpression of both ADT-OH and CBS promoted M2 polarization of BV2 cells, as evidenced by suppressed M1 and elevated M2 signature gene expression. The promoting effects of ADT-OH on M2 polarization were attenuated by an AMPK inhibitor or AMPK knockdown. Liver kinase B1 (LKB1) and calmodulin-dependent protein kinase kinase b (CaMKKb) are upstream kinases that activate AMPK. ADT-OH activated AMPK in Hela cells lacking LKB1. In contrast, both the CaMKKb inhibitor and siRNA abolished ADT-OH activation of AMPK in LPS-stimulated BV2 cells. Moreover, the CaMKKb inhibitor and siRNA blunted ADT-OH suppression on M1 gene expression and enhancement of M2 gene expression in LPS-stimulated BV2 cells. Moreover, ADT-OH promoted M2 polarization of primary microglia in an AMPK activation-and CaMKKb-dependent manner. Finally, in an LPS-induced in vivo neuroinflammation model, both ADT-OH and NaHS enhanced AMPK activation in the brain area where microglia were overactivated on LPS stimulation. Furthermore, ADT-OH suppressed M1 and promoted M2 gene expression in this in vivo model. Innovation and Conclusion: CaMKKb-dependent AMPK activation is an unrecognized mechanism underlying H 2 S suppression on neuroinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.