Background/Aims: Development of effective therapeutic drugs for Parkinson's disease is in great need. During the progression of Parkinson's disease, Rho-associated protein kinase 2 (ROCK2) is activated to promote neurodegeneration. Hydrogen sulfide (H2S) has a neuroprotective effect during the neural injury of Parkinson's disease. However, the mechanisms that underlie the effects of ROCK2 and H2S remain ill-defined. In the current study, we addressed these questions. Methods: We used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse subacute model of Parkinson's disease to study the effects of H2S on astrocytic activation in the mouse striatum, on the levels of tyrosine-hydroxylase (TH)-positive neuron loss, on the apomorphine-induced rotational behavior of the mice, and on the changes in ROCK2 and miR-135a-5p expression. Plasmid transfection was applied to modify miR-135a-5p levels in a neuronal cell line HCN-1A. Bioinformatics analysis was performed to predict the relationship between ROCK2 and miR-135a-5p in neuronal cells, and then was confirmed by luciferase reporter assay. Results: H2S alleviated MPTP-induced astrocytic activation in the mouse striatum, alleviated the increases in TH-positive neuron loss, and improved the apomorphine-induced rotational behavior of the mice. H2S significantly attenuated the increases in ROCK2 and the decreases in miR-135a-5p by MPTP. MiR-135a-5p targeted the 3'-UTR of ROCK2 mRNA to inhibit its translation in neuronal cells. Conclusion: MiR-135a-5p-regulated ROCK2 may play a role in the protective effects of hydrogen sulfide against Parkinson's disease.