Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide 1,2 has successfully identified specific subtypes of regulatory elements 3. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb-Response Elements 4, chromatin states 5, transcription factor binding sites (TFBS) 6–9, PolII regulation 8, and insulator elements 10; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome based on more than 300 chromatin immuno-precipitation (ChIP) datasets for eight chromatin features, five histone deacetylases (HDACs) and thirty-eight site-specific transcription factors (TFs) at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and we validated a subset of predictions for promoters, enhancers, and insulators in vivo. We also identified nearly 2,000 genomic regions of dense TF binding associated with chromatin activity and accessibility. We discovered hundreds of new TF co-binding relationships and defined a TF network with over 800 potential regulatory relationships.
We used the high local electric fields at the junction between the suspended and supported parts of a single carbon nanotube molecule to produce unusually bright infrared emission under unipolar operation. Carriers were accelerated by band-bending at the suspension interface, and they created excitons that radiatively recombined. This excitation mechanism is approximately 1000 times more efficient than recombination of independently injected electrons and holes, and it results from weak electron-phonon scattering and strong electron-hole binding caused by one-dimensional confinement. The ensuing high excitation density allows us to observe emission from higher excited states not seen by photoexcitation. The excitation mechanism of these states was analyzed.
We isolated two T-DNA insertion mutants of Arabidopsis thaliana GLUTATHIONE PEROXIDASE3 (ATGPX3) that exhibited a higher rate of water loss under drought stress, higher sensitivity to H 2 O 2 treatment during seed germination and seedling development, and enhanced production of H 2 O 2 in guard cells. By contrast, lines engineered to overexpress ATGPX3 were less sensitive to drought stress than the wild type and displayed less transpirational water loss, which resulted in higher leaf surface temperature. The atgpx3 mutation also disrupted abscisic acid (ABA) activation of calcium channels and the expression of ABA-and stress-responsive genes. ATGPX3 physically interacted with the 2C-type protein phosphatase ABA INSENSITIVE2 (ABI2) and, to a lesser extent, with ABI1. In addition, the redox states of both ATGPX3 and ABI2 were found to be regulated by H 2 O 2 . The phosphatase activity of ABI2, measured in vitro, was reduced approximately fivefold by the addition of oxidized ATGPX3. The reduced form of ABI2 was converted to the oxidized form by the addition of oxidized ATGPX3 in vitro, which might mediate ABA and oxidative signaling. These results suggest that ATGPX3 might play dual and distinctive roles in H 2 O 2 homeostasis, acting as a general scavenger and specifically relaying the H 2 O 2 signal as an oxidative signal transducer in ABA and drought stress signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.